INTERNATIONAL

Ships and marine technology Manoeuvring of ships -

Part 2:
 Turning and yaw checking

Navires et technologie maritime - Manoeuvres des navires -

(standards.iteh.ai)

ISO 13643-2:2017
https://standards.iteh.ai/catalog/standards/sist/2bc8d9ae-250a-4a19-a915-
f98ffad499c5/iso-13643-2-2017

Reference number

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 13643-2:2017
https://standards.iteh.ai/catalog/standards/sist/2bc8d9ae-250a-4a19-a915-f98ffad499c5/iso-13643-2-2017

COPYRIGHT PROTECTED DOCUMENT

© ISO 2017, Published in Switzerland
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
Ch. de Blandonnet $8 \cdot$ CP 401
CH-1214 Vernier, Geneva, Switzerland
Tel. +41227490111
Fax +41227490947
copyright@iso.org
www.iso.org

Contents

Foreword iv
1 Scope 1
2 Normative references. 1
3 Terms and definitions 1
4 Test-related physical quantities 2
5 General test conditions
6 Test 2.1 - Turning circle test 7
6.1 General 7
6.2 Analysis and presentation of results of a turning circle test 9
6.3 Designation of a turning circle test. 10
7 Test 2.2 - Accelerating turn test 10
7.1 General 10
7.2 Analysis and presentation of results of an accelerating turn test 11
7.3 Designation of an accelerating turn test 11
8 Test 2.3 - Thruster turning test 12
8.1 General 12
8.2 Test at zero speed (Z) 12
8.3 Presentation of the results of a thruster turning test at zerospeed 12
8.4 Thruster turning test at speed ahead (A)... 13
8.5 Test at speed astern (optional) (0) 13
8.6 Analysis and presentation of results of a thruster turning test 14
8.7 Designation of a thruster turning test 14
9 Test 2.4 - Zig-zag test 14
9.1 General 14
9.2 Analysis and presentation of results of a zig-zag test 15
9.3 Designation of a zig-zag test 16
10 Test 2.5 - Course change test 16
10.1 General 16
10.2 Description 16
10.3 Analysis and presentation of results of a course change test 17
10.4 Designation of a course change test 18
11 Test 2.6 - Parallel track test 18
11.1 General 18
11.2 Description 19
11.3 Analysis and presentation of results of a parallel track test 19
11.4 Designation of a parallel track test. 20
12 Test 2.7 - Person over board test 20
12.1 General 20
12.2 Williamson Turn (W) 21
12.3 Scharnow Turn (S) 22
12.4 Analysis and presentation of the results of a person overboard test 22
12.5 Designation of a person overboard test 23
Bibliography 24

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO'saldherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following URL: WWw.iso.org/iso/foreword.html.
The committee responsible for this document is ISO/TC 8, Ships and marine technology, Subcommittee SC 6, Navigation and ship operations.

ISO 13643-2:2017

This second edition cancelstandineplaces lthe finst/edition (ISO13643-2:2013),-of which it constitutes a minor revision with the following changes!98fad499c5/iso-13643-2-2017

- Formula (3) has been changed from " $w=w_{\mathrm{A}}+x_{\mathrm{A}} p-y_{\mathrm{A}} p$ " to " $w=w_{\mathrm{A}}+x_{\mathrm{A}} q-y_{\mathrm{A}} p$ ";
- in 12.2, Paragraph 3, $\left(\Delta \psi_{\mathrm{E}}>60^{\circ}\right)$ has been changed to $\left(\Delta \psi_{\mathrm{E}}<60^{\circ}\right)$ and $\left(\Delta \psi_{\mathrm{E}}<60^{\circ}\right)$ to $\left(\Delta \psi_{\mathrm{E}}>60^{\circ}\right)$;
- in 12.3, Paragraph 3, $\left(\Delta \psi_{\mathrm{E}}>240^{\circ}\right)$ has been changed to $\left(\Delta \psi_{\mathrm{E}}<240^{\circ}\right)$ and $\left(\Delta \psi_{\mathrm{E}}<240^{\circ}\right)$ to $\left(\Delta \psi_{\mathrm{E}}>240^{\circ}\right)$.
A list of all parts in the ISO 13643 series can be found on the ISO website.

Ships and marine technology - Manoeuvring of ships -

Part 2:
 Turning and yaw checking

1 Scope

This document defines symbols and terms and provides guidelines for the conduct of tests to give evidences about the turning ability and the yaw containment of surface ships, submarines, and models. It is intended that it be read in conjunction with ISO 13643-1.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 13643-1:2017, Ships and marine technology - Manoeuvring of ships - Part 1: General concepts, quantities and test conditions̄ STANDARD PREVIEW
ISO 80000-1, Quantities and units StPart F General .iteh.ai)
ISO 80000-3, Quantities and units - Part 3: Space and time
ISO 13643-2:2017

For the purposes of this document, the following terms and definitions apply.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- IEC Electropedia: available at http://www.electropedia.org/
- ISO Online browsing platform: available at http://www.iso.org/obp

3.1
 turning circle test

manoeuvring test to determine the ship's turning characteristics due to application of manoeuvring devices during the period of transient motion and the ensuing steady turn depending on initial speed, manoeuvring device angle or equivalent, and direction of turn

3.2

accelerating turn test

manoeuvring test to determine the ship's behaviour when accelerating from stand-still and simultaneously applying the manoeuvring devices hard over

3.3

thruster turning test

manoeuvring test to determine the capability to turn a ship at zero speed by using its thrusters and to determine the limiting speed at which no more turning effect from bow thrusters can be obtained

Note 1 to entry: This test is relevant to all types and arrangements of tunnel or azimuth thrusters. However, dynamic positioning or traversing tests are beyond the scope of this document.

3.4

zig-zag test

manoeuvring test to determine the ship's turning and yaw checking ability depending upon initial speed, the amount of manoeuvring devices effect applied, and execute change of heading at which the manoeuvring device is applied in the opposite direction (execute change of heading)

3.5
 course change test

manoeuvring test to determine the ship's capability to change heading by a given angle by use of the manoeuvring devices

3.6

parallel track test

manoeuvring test to determine the behaviour of the ship steering to a parallel track by applying manoeuvring devices and subsequently applying the manoeuvring devices in the opposite sense

3.7

person overboard test

manoeuvring test to determine the change of heading at which the ship is steered back to the reciprocal of its initial track by applying manoeuvring devices hard over

3.8

manoeuvring device

rudder, azimuthing thruster, hydroplane, cycloidal propeller, or equivalent system used to manoeuvre a vessel

3.9

hard over

iTeh STANDARD PREVIEW

application of the manoeuvring devices to their maximum designed effect

ISO 13643-2:2017

4 Test-related physical quantities

/catalog/standards/sist/2bc8d9ae-250a-4a19-a915-
8fad499c5/iso-13643-2-2017
Test-related physical quantities are listed in Table 1. The more general quantities and concepts concerning the manoeuvring of ships are set out in ISO 13643-1.

For quantities and their units, ISO 80000-1 and ISO 80000-3 shall be used.
Table 1 - Test-related physical quantities

Symbol	CC-code	SI-unit	Term	Concept Definition or explanation
D_{c}	DC	m	Steady turning diameter	Diameter of ship's track relative to the water once a steady turn is established
P			Port (side)	-
$P_{\text {EX }}$	EXP	-	Extreme point	Point of the after part of the vessel which, during the steady turn, describes the path with the greatest diameter relative to the water
p	OMX	rad s-1 a	Roll velocity	(See ISO 13643-1)
q	OMY	rad s-1 a	Angular velocity about y-axis	(See ISO 13643-1)
r	OMZ	rad s-1 a	Angular velocity about $Z-a x i s ~$	(See ISO 13643-1)
S		Starboard (side)		
s_{10}	SP10	m	Track reach for 10° change of heading	Distance along the ship's track at $\Delta \psi=10^{\circ}$ (usually only for $\left.\delta_{\mathrm{Ri}}=10^{\circ}\right)$
T	TIP	s	Time of complete cycle	See Figure 5

Table 1 (continued)

Symbol	CC-code	SI-unit	Concept	
			Term	Definition or explanation
t_{E}	TIE	S	Execute time	From $t=0$ to applying the manoeuvring devices in the opposite direction
$t_{\text {F }}$	TIF	S	Time to complete test (run)	For course change test: from start of heading change to $\dot{\psi}=0$
				For parallel track test: from $t=0$ to again reaching the initial heading ψ_{0}
				For person overboard test: from $t=0$ to reaching reciprocal heading ($\Delta \psi=180^{\circ}$) after applying the manoeuvring devices in the opposite direction
$t_{\text {S }}$	TIS	S	Time to reach maximum change of heading	-
t_{a}	TIA	S	Initial turning time	Until $\psi_{\mathrm{E} 1}$ is reached
$t_{\text {c } 1}$	TIC1	S	First time to check yaw	From initiating application of manoeuvring devices in the opposite direction until maximum change of heading is reached (indices 1,3 , etc. for overshoot to S)
$t_{\text {c }}$	TIC2	irsell	Second time to check yaw N A A A A	From initiating application of manoeuvring devices in the opposite direction until maximum change of heading/is reached (indices 2,4 , etc. for overshoot to P)
t_{r}	TIR	S	Reach timedal ${ }^{\text {dis. }}$	Timetaken to complete the first half cycle
$t_{0 \mathrm{R}}$	TIOR	S	Time to return to 0°	Time taken to return to the initial heading
t_{10}	TI10	S	Time to turn 10°	To turn through $\Delta \psi=10^{\circ}$
t_{15}	TI15	s	Time to turn $155^{\circ} /$ iso-13643-	Tp,turn through $\Delta \psi=15^{\circ}$
t_{180}	TI180	S	Time to turn 180°	To turn through $\Delta \psi=180^{\circ}$
t_{270}	TI270	S	Time to turn 270°	To turn through $\Delta \psi=270^{\circ}$
t_{30}	TI30	s	Time to turn 30°	To turn through $\Delta \psi=30^{\circ}$
$t_{30 \mathrm{R}}$	TI30R	s	Time to return to 30°	To turn back to reach again $\Delta \psi=30^{\circ}$
t_{360}	TI360	S	Time to turn 360°	To turn through $\Delta \psi=360^{\circ}$
t_{60}	TI60	S	Time to turn 60°	To turn through $\Delta \psi=60^{\circ}$
$t_{60 \mathrm{R}}$	TI60R	S	Time to return to 60°	To turn back to reach again $\Delta \psi=60^{\circ}$
t_{90}	TI90	S	Time to turn 90°	To turn through $\Delta \psi=90^{\circ}$
u	VX	$\mathrm{m} \mathrm{s}^{-1} \mathrm{~b}$	Longitudinal velocity	(See ISO 13643-1)
$u_{\text {A }}$	VXA	$\mathrm{m} \mathrm{s}^{-1} \mathrm{~b}$	Longitudinal velocity at antenna	(See ISO 13643-1)
$u_{\text {d }}$	VXD	$\mathrm{m} \mathrm{s}^{-1} \mathrm{~b}$	Mean steady longitudinal velocity	-
V	V	$\mathrm{m} \mathrm{s}^{-1} \mathrm{~b}$	Ship's speed through the water	(See ISO 13643-1)
$V_{\text {c }}$	VC	$\mathrm{m} \mathrm{s}^{-1} \mathrm{~b}$	Speed during steady turn	If the wind influence is significant, a speed which would be valid under still conditions shall be derived by averaging.
V_{F}	VF	$\mathrm{m} \mathrm{s}^{-1 \mathrm{~b}}$	Final speed	Speed at end of test (run)
V_{L}	VL	$\mathrm{m} \mathrm{s}^{-1} \mathrm{~b}$	Threshold speed	Speed ahead at which no more turning effect by the bow thrusters can be observed
V_{0}	V0	$\mathrm{m} \mathrm{s}^{-1} \mathrm{~b}$	Initial speed	(See ISO 13643-1)

Table 1 (continued)

Symbol	CC-code	SI-unit	Concept	
			Term	Definition or explanation
V_{180}	V180	$\mathrm{m} \mathrm{s}^{-1} \mathrm{~b}$	Speed at 180° change of heading	V at $\Delta \psi=180^{\circ}$
V_{270}	V270	$\mathrm{m} \mathrm{s}^{-1} \mathrm{~b}$	Speed at 270° change of heading	V at $\Delta \psi=270^{\circ}$
V_{360}	V360	$\mathrm{m} \mathrm{s}^{-1} \mathrm{~b}$	Speed at 360° change of heading	V at $\Delta \psi=360^{\circ}$
V_{90}	V90	$\mathrm{m} \mathrm{s}^{-1} \mathrm{~b}$	Speed at 90° change of heading	V at $\Delta \psi=90^{\circ}$
v	VY	$\mathrm{m} \mathrm{s}^{-1} \mathrm{~b}$	Lateral velocity	(See ISO 13643-1)
$v_{\text {A }}$	VYA	$\mathrm{m} \mathrm{s}^{-1 \mathrm{~b}}$	Lateral velocity at antenna	(See ISO 13643-1)
$\nu_{\text {c }}$	VYC	$\mathrm{m} \mathrm{s}^{-1 \mathrm{~b}}$	Lateral velocity in steady turn	-
$v_{\text {d }}$	VYD	$\mathrm{m} \mathrm{s}^{-1} \mathrm{~b}$	Mean steady lateral (drift) velocity	-
w	VZ	$\mathrm{m} \mathrm{s}^{-1} \mathrm{~b}$	Normal velocity	(See ISO 13643-1)
$w_{\text {A }}$	VZA	$\mathrm{m} \mathrm{s}^{-1} \mathrm{~b}$	Normal velocity at antenna	(See ISO 13643-1)
$x_{\text {A }}$	XA	m	Longitudinal position of antenna	In ship-fixed axis system
χ_{X}	XX	m hithe	Longitudinal position2f ${ }^{\circ} \mathrm{C}$ pivoting point ISO 1364 -//standards iteh ailcatalog/standa	Coordinate of the point on the centreline plane at which the speed is tangential to that plane S.1TEM.al) v $\dot{\theta} \sin \phi-\dot{\psi} \cos \phi \cos \theta$ ds/sist/2he8d9ae-250a-4a19-a915-
$X_{\text {xc }}$	XXC	m	Longitudinal position of pivoting point during steady turn	$-\frac{13643-2-2017}{\dot{\psi}_{C} \cos \phi_{C} \cos \theta_{C}}$
x_{0}	X0	m	-	Coordinate in the direction of the initial heading of the earth-fixed axis system moving with the water, the origin of which coincides with that of the ship-fixed axis system at $t=0$ (See also ISO 13643-1)
$\chi_{0}{ }^{\text {F }}$	X0F	m	Advance at end of test (run)	x_{0}-component of ship's track at t_{F}
x_{0} MAX	X0MAX	m	Maximum advance	Largest x_{0}-component of ship's track
$\chi_{0} \mathrm{~V}$	X0V	m	Virtual advance	x_{0} at intersection of initial track and tangent to the track at t_{F}
χ_{090}	X090	m	Advance	x_{0}-component of ship's track at $\Delta \psi=90^{\circ}$
\dot{x}_{0}	X0T	$\mathrm{m} \mathrm{s}^{-1} \mathrm{~b}$	Rate of change of global coordinates	In x_{0}-direction
$y_{\text {A }}$	YA	m	Lateral position of antenna	In ship-fixed axis system
y_{0}	Y0	m	Transverse axis	Coordinate in the water surface perpendicular to x_{0}, analogous definition (see also ISO 13643-1)
$y_{0} \mathrm{~F}$	Y0F	m	Transfer at end of test (run)	y_{0}-component of ship's track at t_{F}

Table 1 (continued)

Symbol	CC-code	SI-unit	Concept	
			Term	Definition or explanation
$y_{0 \mathrm{max}}$	Y0MAX	m	Maximum transfer	For turning circle, accelerating turn and person overboard test: largest y_{0}-component of ship's track
				For zig-zag test: during first half cycle to S
$y_{00 \mathrm{PP}}$	Y00PP	m	Maximum opposite transfer	Largest y_{0}-component of the ship's track opposite to the direction of turn
y_{0180}	Y0180	m	Tactical diameter	y_{0}-component of ship's track at $\Delta \psi=180^{\circ}$
y_{090}	Y090	m	Transfer	y_{0}-component of ship's track at $\Delta \psi=90^{\circ}$
\dot{y}_{0}	Y0T	$\mathrm{m} \mathrm{s}^{-1} \mathrm{~b}$	Rate of change of global coordinates	In y_{0}-direction
$z_{\text {A }}$	ZA	m	Normal position of antenna	In ship-fixed axis system
α	ALPHA	radc	Maximum slope angle of heading curve	-
$\beta_{\text {c }}$	BETC	radc	Drift angle during steady turn	See ISO 13643-1 for definition of drift angle β
$\Delta t_{\text {s }}$	DTIS	s	Overshoot time	$t_{\mathrm{s}}-t_{60}$
$\Delta \psi$	DPSIH	radeh	Change of heading RD	\%R \sim_{0} V W
$\Delta \psi_{\mathrm{E}}$	DPSIHE	radc	Execute change of heading	Specified absolute amount of change of heading forapplying the manoeuvring devices into the opposite direction
$\Delta \psi_{\mathrm{F}}$	DPSIHF	radtc	Change of heading at end ofitesti/catalog/standards/sist/2	
$\Delta \psi_{\mathrm{s}}$	DPSIHS	radc	198flad499c5/iso-13643-2 Overshoot angle	Angle by which the change of heading of 60° is exceeded before the vessels start turning in the opposite direction
$\delta_{\text {Ri }}$	ANRUI	rad^{c}	Test manoeuvring device angle	For turning circle and accelerating turn test: relative to δ_{0}; if necessary, an equivalent test manoeuvring device setting shall be given, e.g. for submarines with X-planes: $1 / 4\left(\delta_{\mathrm{Ai2} 2}+\delta_{\mathrm{Ai3}}-\delta_{\mathrm{Ai} 1}-\delta_{\mathrm{Ai4}}\right)$
				For zig-zag and course change test: absolute value relative to δ_{0}; if necessary, an equivalent test manoeuvring device setting shall be given, e.g. for submarines with X-planes: $\left\|1 / 4\left(\delta_{\mathrm{Ai} 2}+\delta_{\mathrm{Ai} 3}-\delta_{\mathrm{Ai} 1}-\delta_{\mathrm{Ai} 4}\right)\right\|$
				For parallel track test: for which maximum manoeuvring device efficiency can be expected
δ_{0}	ANRU0	$\mathrm{rad}^{\text {c }}$	Neutral manoeuvring device angle	(See ISO 13643-1)
$\theta_{\text {c }}$	TRIMSC	$\mathrm{rad}^{\text {c }}$	Trim angle during steady turn	See ISO 13643-1 for definition of trim angle
ϕ_{c}	HELANC	radc	Heel angle during steady turn	If the wind influence is significant, a heel angle which would be valid in still conditions shall be derived by averaging.
$\phi_{\text {MAX }}$	HELANM	$\mathrm{rad}^{\text {c }}$	Maximum heel angle	During initial phase
ψ	PSIH	radc	Heading	(See ISO 13643-1)

Table 1 (continued)

			Concept	
	CC-code	Si-unit	Term	Definition or explanation
$\psi_{\text {E1 }}$	PSIHE1	rad^{c}	Heading for first execute	$\psi_{0}+\Delta \psi_{\mathrm{E}}$ Heading when the manoeuvring devices are applied in the opposite direction (turn to P)
$\psi_{\text {E2 }}$	PSIHE2	rad^{c}	Heading for second execute	$\psi_{0}-\Delta \psi_{\mathrm{E}}$ Heading when the manoeuvring devices are applied back in the original direction (turn to S)
ψ_{F}	PSIHF	radc	Final heading	Heading at end of test (run)
$\psi_{\text {s }}$	PSIS	$\mathrm{rad}^{\text {c }}$	Heading at which the turn becomes steady	-
$\psi_{\text {s1 }}$	PSIS1	radc	First overshoot angle	During the turn, angle between the heading at which the manoeuvring devices are applied in the opposite direction and the heading at which the vessel ceases to turn in the current direction. Index 1 identifies the first overshoot angle to S, and subsequent overshoots to S are identified by indices 3,5 , and so on.
$\psi_{\mathrm{s} 2}$	PSIS2	radc	Second overshoot angle (standard	Angle between the heading at which the manoeuvring devices are applied back in the original direction and the heading at which the vessel ceases to turn in the current direction. Index 2 identifies the first overshoot angle to P , and subsequent overshoots to P are identified by indices 4,6 , and so on.
ψ_{0}	PSIH0	radc ${ }_{\text {ghtps }}$	ISO 1364 Initialheading/catalog/standa f98ffad499c5/iso	Heading of a vessel at the commencement of a testrun (sometimes also known as the approach heading)
$\dot{\psi}_{C}$	YARTC	rad s ${ }^{-1}$ a	Rate of turn during steady turn	Rate of change of heading during steady turn. If the wind influence is significant, a rate which would be valid in still conditions shall be derived by averaging.
$\dot{\psi}_{\text {MAX }}$	YARTM	$\mathrm{rad} \mathrm{s}^{-1} \mathrm{a}$	Maximum rate of turn	Shortly after first, second, etc. application of the manoeuvring devices in the opposite direction $\frac{m_{t}}{m_{\psi}} \tan \alpha$, with m_{t} for the scale of the t-axis in m / s and m_{ψ} for the scale of the ψ-axis in $\mathrm{m} / \mathrm{rad}^{\mathrm{b}}$
```a For rate of turn, the unit \({ }^{\circ} / \mathrm{s}\) (degree per second) may be used. b The unit kn, common in the navigation, may be used. c For angles, the unit \({ }^{\circ}\) (degree) may be used.```				

## 5 General test conditions

- The general test conditions in ISO 13643-1:2013, Clause 8 shall be observed.
- When operating submerged, submarines shall be trimmed according to the results of the neutral level flight test (see ISO 13643-5:2013, Clause 8). During the test, the dived depth shall be kept as constant as possible. The dived depth and the plane angles are to be recorded continuously. If the submarine is equipped with planes acting into the horizontal as well as into the vertical direction at the same time (e.g. X-planes), these planes should be controlled in such a way that the dived depth is maintained with priority.
- During the test, including the approach phase, each successive position of the ship is to be recorded e.g. using an onboard navigation system during surface operations - at suitable time intervals (usually every second).
- The reference point on the ship relative to which its track is measured should be defined in advance (e.g. location of the antenna). This point is not necessarily identical with the origin of the ship-fixed axis system for which the ship's track shall be given (see ISO 13643-1). If the location of the antenna has the coordinates $\mathrm{x}_{\mathrm{A}}, \mathrm{y}_{\mathrm{A}}$, and $\mathrm{z}_{\mathrm{A}}$ in the ship-fixed axis system and the velocity components measured at this location are $u_{A}, v_{A}$, and $w_{A}$, the velocity components at origin of the ship-fixed axis system are given by:
$u=u_{\mathrm{A}}+y_{\mathrm{A}} r-z_{\mathrm{A}} q$
$v=v_{\mathrm{A}}+x_{\mathrm{A}} r+z_{\mathrm{A}} p$
$w=w_{\mathrm{A}}+x_{\mathrm{A}} q-y_{\mathrm{A}} p$
- Data which shall be recorded continuously include (but need not be limited to) manoeuvring device angle of operation, power setting, speed through the water, heading, rate of turn, heel angle, propeller shaft speed/torque, propeller pitch, true wind velocity and direction, and relative wind velocity and direction.
- Test descriptions are valid for ships. Tests with models are carried out analogously.


## iTeh STANIDARID PREVIEW

## 6 Test 2.1 - Turning circlettestdards.iteh.ai)

### 6.1 General

ISO 13643-2:2017
httos $/ / /$ standards. iteh ai/catalog/standards/sist/2bc8d9ae-250a-4a19-a915-
In addition to the general test conditions 4 ytlined in $15013643-1$ and clause 5 , the following conditions shall be complied with.

- The ship shall be at a steady speed $V_{0}$ before commencing the test. During the test, the propulsion plant settings shall remain unaltered.
- During the approach, the ship is going straight ahead at a steady speed without significant application of a manoeuvring device for at least 2 min . For ships unstable in yaw, realistic minimum manoeuvring device angles should be used during the approach. It is important that during the approach, the ship has as little yaw velocity as possible. To start the test, the manoeuvring devices are applied as required by the specific test as fast as possible in the required direction of the turn and are maintained at that setting during the rest of the test (beginning of the application at $t=0$ ). Following a transient phase, the turn will become steady, i.e. the rate of turn, ship's speed, heel, and drift angle will then all be constant. The steady turn may be disturbed by external influences.
- Applying the manoeuvring devices equally to port (P) or starboard (S) may result in differing responses of the vessels (e.g. dissimilar turning diameters). Consequently, the direction of turn for which the data were measured shall be recorded. The conduct of port and starboard turning circles using the same settings of the manoeuvring devices should be attempted consecutively from the same initial heading, preferably into wind.
- The test is completed after a change of heading of at least $360^{\circ}$ (see Figure 1).

If the submarine's track cannot be determined by means of an inertia platform onboard, the measured speeds $V$ or $u$ have to be used. Generally, it is sufficient to assume $u \approx V$ and to calculate the rate of change of the global coordinates $\dot{x}_{0}$ and $\dot{y}_{0}$ by the formulae:

$$
\begin{align*}
& \dot{x}_{0} \approx u \cos \psi \\
& \dot{y}_{0} \approx u \sin \psi \tag{4}
\end{align*}
$$

Time integration gives the coordinates $x_{0}$ and $y_{0}$ as functions of time.
Average steady drift velocities $u_{\mathrm{d}}$ and $v_{\mathrm{d}}$ in global $x_{0}$ - and $y_{0}$-directions can be determined by:

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{\psi_{\mathrm{s}}}^{\psi_{\mathrm{s}}^{+2 \pi}} \dot{x}_{0} \mathrm{~d} \psi=u_{\mathrm{d}} \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{\psi_{\mathrm{s}}}^{\psi_{\mathrm{s}}^{+2 \pi}} \dot{y}_{0} \mathrm{~d} \psi=v_{\mathrm{d}} \tag{6}
\end{equation*}
$$

where $\psi_{\mathrm{S}}$ is the heading at which the turn is expected to become steady. Subtracting $u_{\mathrm{d}}$ and $v_{\mathrm{d}}$ from the measured velocities $\dot{x}_{0}$ and ${ }_{\rho} \dot{y}_{0}$ and integrating to get the track coordinates $x_{0}$ and $y_{0}$ might be a reasonable method to reduce the effect of external influences. Atso, the measured speed, $V$, shall be corrected accordingly, where

$$
\begin{equation*}
V=\sqrt{\left(\dot{x}_{0}-u_{\mathrm{d}}\right)^{2}+\left(\dot{y}_{0}-v_{\mathrm{d}}\right)^{2}} \quad \frac{\text { hitps } / \text { sdandards. iteh.ai/catalog/standards/sist/2bc8d9ae-250a-4a19-a915- }}{\text { 198ffad499c5/iso-13643-2-2017 }} \tag{7}
\end{equation*}
$$

