FINAL DRAFT # INTERNATIONAL **STANDARD** ISO/FDIS 19935-2 ISO/TC **61**/SC **5** Secretariat: DIN Voting begins on: 2020-04-16 Voting terminates on: 2020-06-11 **Plastics** — Temperature modulated DSC — Plastiques — DSC à température modulée — Partie 2: Mesurage précis de la chaleur spécifique c_p Measurement of accurate specific RECIPIENTS OF THIS DRAFT ARE INVITED TO SUBMIT, WITH THEIR COMMENTS, NOTIFICATION OF ANY RELEVANT PATENT RIGHTS OF WHICH THEY ARE AWARE AND TO PROVIDE SUPPORTING DOCUMENTATION. IN ADDITION TO THEIR EVALUATION AS BEING ACCEPTABLE FOR INDUSTRIAL, TECHNOLOGICAL, COMMERCIAL AND USER PURPOSES, DRAFT INTERNATIONAL STANDARDS MAY ON OCCASION HAVE TO BE CONSIDERED IN THE LIGHT OF THEIR POTENTIAL TO BECOME STAN-DARDS TO WHICH REFERENCE MAY BE MADE IN NATIONAL REGULATIONS. ### **COPYRIGHT PROTECTED DOCUMENT** © ISO 2020 All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Fax: +41 22 749 09 47 Email: copyright@iso.org Website: www.iso.org Published in Switzerland | Contents | | Page | |----------------------|--|----------| | Fore | eword | iv | | Intr | oduction | v | | 1 | Scope | | | 2 | Normative references | | | | | | | 3 | Terms and definitions | | | 4
5 | Symbols and abbreviated terms 4.1 Temperature modulation, <i>T(t)</i> 4.2 Scanning rate 4.3 Heat flow rate, Φ(t) Principles of determination of specific heat capacity with temperature modulated D 5.1 General | 11 SC2 | | | 5.2 Specific heat capacity with no processes | | | | 5.3 Reversing and non-reversing specific heat capacity | 2 | | | 5.4 Step scan method | 2 | | | 5.4 Step scan method 5.5 Multiple frequencies Apparatus and materials 6.1 General | 2 | | 6 | Apparatus and materials | 2 | | | 6.1 General | 2 | | | 6.7 Tamparature control at modulated ditterantial compine calorimeter | ٠, | | 7 | Calibration 7.1 General 7.2 Calibration of modulation amplitude 7.3 Calibration of phase Procedure 8.1 General | 3 | | | 7.1 General de la companya com | 3 | | | 7.2 Calibration of modulation amplitude | 3 | | | 7.3 Calibration of phase | 3 | | 8 | Procedure | 3 | | | 8.1 General | 3 | | | 8.2 Calculation of the specific heat capacity | 3 | | | 8.3 Examples of the results | 4 | | | 8.3.1 Modulated heat flow rate and scanning rate of modulation | 4 | | | 8.3.2 Determination of specific heat capacity | 5 | | 9 | Precision and bias | 6 | | 10 | Test report | 6 | | Ann | lex A (informative) Example of the $c_{ m p}$ values of polystyrene (PS) | 8 | | | nex B (informative) Example of the calibration constant $K(ω)$ determined with the literature values of α- Al_2O_3 [3] | | | Ann | nex C (informative) Example of a reversing heat flow rate curve based on a modulated heat flow rate curve and a comparison with the specific heat capacity | 10 | | Ann | nex D (informative) Example of determination of specific heat capacity based on a multifrequency modulated heat flow rate curve | 11 | | Rihl | liography | 13 | ### **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives). Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents). Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement. For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html. This document was prepared by Technical Committee ISO/TC 61, *Plastics*, Subcommittee SC 5, *Physical-chemical properties*. A list of all parts in the ISO 19935 series can be found on the ISO website. Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html. iv # Introduction This document describes the realization of standardized thermoanalytical test methods which can be used for the determination of specific heat capacity data needed for data sheets or databases as well as for research purposes. It can also be applied to quality assurance or to routine checks of raw materials and finished products, if desired. The procedures mentioned in this document apply as long as special product standards or standards describing special atmospheres for conditioning of samples do not require alternate regulations. For scientific investigations or resolution of special analytical problems, all technical capabilities of the instruments beyond the regulations of this document may be used. I ch SI A Randards it change sandards is the first sandards is the first sandards and find sandards it in the first sandards and first sandards it in the first sandards and first sandards it in the first sandards it in the first sandards it is the first sandards in i # Plastics — Temperature modulated DSC — # Part 2: # Measurement of accurate specific heat $c_{\rm p}$ # 1 Scope This document establishes a method for measurement of specific heat capacity, $c_{\rm p}$, using temperature modulated differential scanning calorimetry. ### 2 Normative references The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 472, Plastics — Vocabulary ISO 11357-1, Plastics — Differential scanning calorimetry (DSC) — Part 1: General principles ISO 19935-1, Plastics — Temperature modulated DSC — Part 1: General principles ISO 80000-5, Quantities and units — Part 5: Thermodynamics # 3 Terms and definitions For the purposes of this document, the terms and definitions given in ISO 472, ISO 11357-1, ISO 19935-1 and ISO 80000-5 apply. ISO and IEC maintain terminological databases for use in standardization at the following addresses: - ISO Online browsing platform: available at https://www.iso.org/obp - IEC Electropedia: available at http://www.electropedia.org/ ### 4 Symbols and abbreviated terms ## 4.1 Temperature modulation, T(t) According to ISO 19935-1. ### 4.2 Scanning rate According to ISO 19935-1. ### 4.3 Heat flow rate, $\Phi(t)$ According to ISO 19935-1. # Principles of determination of specific heat capacity with temperature modulated DSC ### 5.1 General The use of temperature modulated DSC is advantageous for the measurement of specific heat capacity not only outside the region of a transition, because it does not require a stable baseline to achieve high accuracy. The measurement of specific heat capacity is only based on the amplitude of the modulated heat flow rate signal. #### Specific heat capacity with no processes 5.2 According to ISO 19935-1. #### Reversing and non-reversing specific heat capacity 5.3 According to ISO 19935-1. # 5.4 Step scan method In the step scan method, the isothermal line is called as iso-kinetic (iso K) base line. Specific heat In the step scan method, the isothermal line is called as iso-kinetic (iso-K) base line. Specific heat capacity, $$c_{\rm p}$$, can be determined by integrating the heat flow rate $\Phi(t)$ in one cycle as Formula (1): $$c_p = \frac{1}{m\Delta T} \int_{t_0}^{t_e} \Phi(t) dt$$ where $$m \qquad \text{is the mass of the sample},$$ $$\Delta T \qquad \text{is a temperature step};$$ $$t_{\rm e}, t_0 \qquad \text{is a time interval in one period},$$ # 5.5 Multiple frequencies Assuming the linear response theory, the input of multiple frequencies or random pulses as a modulated heat source are analysed with the procedures in the ISO 19935-1. An example is shown in Annex D. # **Apparatus and materials** ### 6.1 General Use the apparatus according to ISO 19935-1. ### Temperature control of modulated differential scanning calorimeter Specifications of temperature control required to temperature modulated DSC are added as follows. Capability to vary temperature periodically, or by a step, or by an input of pulse sequence with an amplitude, typically in the range of (±0,1 to 2,0) K, and a frequency, typically down to 10 mHz, superimposed on the underlying rate, typically less than 3 K/min. - b) Depending on the relation of the underlying scanning rate β_0 to the amplitude of sample temperature profile $T_A\omega$, where ω the angular frequency, four cases of scanning rates are distinguished. - 1) Quasi-isothermal mode, $\beta_0 = 0$. If $\beta_0 = 0$ heat capacity can be measured as function of time, e.g. during chemical reactions like curing or during crystallization. All other calorimetric methods measure heat capacity as function of temperature only. - 2) For other modes, such as, $T_A \omega > \beta_0$, $T_A \omega < \beta_0$, and $T_A \omega = \beta_0$, refer to ISO 19935-1. - Any mode of temperature modulation specified in ISO 19935-1 can be used. #### **Calibration** 7 ### 7.1 General According to ISO 19935-1. # 7.2 Calibration of modulation amplitude According to ISO 19935-1. # 7.3 Calibration of phase According to ISO 19935-1. ### **Procedure** ### 8.1 General enodulated DSC nath the with 1800 The procedures of temperature modulated DSC (setting up the apparatus, loading the specimen into the crucibles, insertion of crucibles into the instrument, performing measurements, and removal of crucibles) shall be in accordance with 180 11357-1. The experimental conditions specified to temperature modulated DSC (for example, amplitude of the modulated heat flow rate, amplitude of modulated temperature, and the frequency of the modulation superimposed on the underlying rate) to be used depending on the magnitude of the specific heat capacity to be determined. #### Calculation of the specific heat capacity 8.2 Specific heat capacity is calculated as Formula (2): $$c_{\rm p} = \frac{\Phi_A}{m \cdot T_{\rm A} \cdot \omega} \cdot K(\omega) \tag{2}$$ where is the specific heat capacity of the specimen, in $Ig^{-1}K^{-1}$; c_p is the amplitude of sample temperature profile, in K; T_{A} Φ_{A} is the amplitude of the periodic part of the modulated heat flow rate, in mW; # ISO/FDIS 19935-2:2020(E) - *m* is the mass of the specimen, in mg; - ω is the angular frequency of the modulated temperature, in rad/s; ω = 2π f, where f is frequency in Hz; - $K(\omega)$ is the calibration constant calculated with the definition in ISO 19953-1:2018, 7.2. For precise measurements, ω shall be low (typically ω < 60 mrad/s), so that $K(\omega)$ becomes independent on ω . For the case of step scan mode, Formula (1) shall be used to calculate c_n . ## 8.3 Examples of the results ### 8.3.1 Modulated heat flow rate and scanning rate of modulation Figure 1 shows a typical example of modulated temperature and scanning rate (of modulation) derived by a derivative of modulated temperature of a sinusoidal waveform for the heat flux DSC plotted vs time. The scanning rate of modulation is measured as a sinusoidal wave. a sinusoidal waveform for the he as in is measured as a sinusoidal wave. Tell of Landards itellial status and scanning rate (of the heart is measured as a sinusoidal wave.