INTERNATIONAL STANDARD

ISO 150

Third edition 2018-11

Raw, refined and boiled linseed oil for paints and varnishes — Specifications and methods of test

Huiles de lin brutes, raffinées et cuites, pour peintures et vernis — Spécifications et méthodes d'essai

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 150:2018 https://standards.iteh.ai/catalog/standards/sist/751aed18-b29b-4ed5-81ab-55c5be7a176c/iso-150-2018

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 150:2018 https://standards.iteh.ai/catalog/standards/sist/751aed18-b29b-4ed5-81ab-55c5be7a176c/iso-150-2018

COPYRIGHT PROTECTED DOCUMENT

© ISO 2018

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Fax: +41 22 749 09 47 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Co	Contents Page					
Fore	word		iv			
1	Scor	Scope				
2	Nori	Normative references				
3	Terms and definitions					
4	Required characteristics and their tolerances					
5	Sampling					
6	Clar	ity	3			
	6.1	Raw oil				
	6.2	Alkali-refined, acid-refined and boiled oil	4			
7	Phosphoric acid test (PAT value) (for raw linseed oil only)					
-	7.1	Principle				
	7.2	Reagents				
	7.3	Apparatus	4			
	7.4	Preparation of the sample				
	7.5	Procedure				
	7.6	Expression of results				
	7.7	Precision				
		7.7.1 Repeatability NDARD PREVIEW	7			
8	Asse	essment of break in alkali-refined linseed oils. General				
	8.1	General (Standards.iten.ar)	8			
	8.2	Principle	8			
	8.3	Principle Reagent	8			
	8.4	Apparatus tandards. Iten av catalog/standards/sist//51aed18-b290-4ed5-81ab-	8			
	8.5	Procedure 350506/41/00/80-150-2018	8			
	8.6	Expression of results	8			
9	Test	Test report				
Ann	ex A (in	nformative) Standard values for the composition of fatty acids of raw linse	ed oil10			

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see www.iso.org/iso/foreword.html. (standards.iteh.ai)

This document was prepared by Technical Committee ISO/TC 35, *Paints and varnishes*.

This third edition cancels and replaces the second edition (ISO 45082006); which has been technically revised.

55c5be7a176c/iso-150-2018

The main changes compared to the previous edition are as follows:

- the determination of the composition of fatty acids in accordance with ISO 12966 has been specified;
- ISO 2811-3 (oscillation method) has been added for determination of density;
- the determination of drying time has been deleted;
- reference to the use of the Lovibond colour system as an alternative to the Gardner colour scale has been deleted because the visual method is too inaccurate;
- sampling in accordance with ISO 15528 has been replaced by sampling in accordance with ISO 5555;
- the preparation of samples in accordance with ISO 661 has been added;
- the standard values for the composition of fatty acids have been revised;
- the normative references in <u>Clause 2</u> have been updated and the text has been editorially revised.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.

Raw, refined and boiled linseed oil for paints and varnishes — Specifications and methods of test

1 Scope

This document specifies the requirements and the corresponding methods of test for raw, refined and boiled linseed oils for paints and varnishes.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 660, Animal and vegetable fats and oils — Determination of acid value and acidity

ISO 661, Animal and vegetable fats and oils — Preparation of test sample

ISO 835, Laboratory glassware — Graduated pipettes

ISO 2114, Plastics (polyester resins) and paints and varnishes (binders) Determination of partial acid value and total acid value (standards.iteh.ai)

ISO 2811-1, Paints and varnishes — Determination of density — Part 1: Pycnometer method

ISO 2811-3, Paints and varnishes — Determination of density — Part 3: Oscillation method

ISO 3681, Binders for paints and varnishes — Determination of saponification value — Titrimetric method

ISO 3961, Animal and vegetable fats and oils — Determination of iodine value

ISO 4618, Paints and varnishes — Terms and definitions

ISO 4630, Clear liquids — Estimation of colour by the Gardner colour scale

ISO 4793, Laboratory sintered (fritted) filters — Porosity grading, classification and designation

ISO 5555, Animal and vegetable fats and oils — Sampling

ISO 5661, Petroleum products — Hydrocarbon liquids — Determination of refractive index

ISO 6320, Animal and vegetable fats and oils — Determination of refractive index

ISO 8534, Animal and vegetable fats and oils — Determination of water content — Karl Fischer method (pyridine free)

ISO 12966 (all parts), Animal and vegetable fats and oils — Gas chromatography of fatty acid methyl esters

3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 4618 and the following apply. ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- IEC Electropedia: available at http://www.electropedia.org/
- ISO Online browsing platform: available at https://www.iso.org/obp

3.1

raw linseed oil

oil obtained solely from mature seeds of linseed (Linum usitatissimum L.)

3.2

acid-refined linseed oil

oil obtained by refining raw linseed oil with acid

3.3

alkali-refined linseed oil

oil obtained by refining raw linseed oil with sodium hydroxide or other alkali solution

3.4

boiled linseed oil

oil obtained by incorporating driers in raw linseed oil or refined linseed oil and heating either alone or while blowing through air or oxygen

3.5

break

separation of an (insoluble) mucilaginous product which occurs when certain unrefined vegetable oils are heated

Note 1 to entry: When separation occurs, the oil is said to "break". The insoluble matter is also referred to as the "break".

4 Required characteristics and their tolerances PREVIEW

Raw, refined and boiled linseed oils shall have the characteristics specified in Table 1.

Table 1 — Required characteristics and their tolerances

Characteristic	55c5b Requirement -2018				Test
	Raw linseed oil	Alkali-refined linseed oil	Acid-refined linseed oil	Boiled linseed oil	method
Density ^a $ ho_{23}$ g/ml		0,924 to 0,931	0,924 to 0,931	0,926 to 0,948	ISO 2811- 1 or ISO 2811-3
Gardner colour max.	13	4	6	To be agreed between the inter- ested parties	ISO 4630
Gardner colour after heating max.	_	b	_	_	_

² 23 °C is the standard temperature unless otherwise agreed: for example 20 °C, 25 °C, or 27 °C for tropical countries.

b If the acid value of neutral oil has been increased by the addition of fatty acids, then the requirement for colour after heating should be agreed upon between the interested parties, as the limits for neutral oil are not necessarily applicable.

c Stricter requirements may be agreed between the interested parties.

 $^{^{}m d}$ Alkali-refined oil may have its acid value adjusted to other limits for specific uses. In such cases the value should be agreed upon by the interested parties.

e Or to be agreed between the interested parties.

The iodine value and saponification value can also be obtained from the composition of fatty acids.

g Raw or refined linseed oil with an iodine value over 190 should be designated "High iodine value linseed oil". The Hanus method, sometimes used for this test, gives different results to the Wijs method; if it is used by agreement between the interested parties, prior agreement on specification limits is essential.

Table 1 (continued)

Characteristic	Requirement				Test
	Raw linseed oil	Alkali-refined linseed oil	Acid-refined linseed oil	Boiled linseed oil	method
Clarity	No sediment ^c at 65 °C	A slight turbidity is allowed; after shortly heating to 45 °C the turbidity shall disappear and the oil shall stay clear after cooling to 20 °C		_	Clause 6
Refractive index ^a n_D^{23}	1,478 0 to 1,483 0	1,478 0 to 1,483 0	1,478 0 to 1,483 0	_	ISO 5661 or ISO 6320
Water max. % (mass fraction)	0,20	0,10	0,10	0,30	ISO 8534
Acid value max. mg KOH/g	4	1 ^d	9e	8e	ISO 2114 or ISO 660
Saponification value mg KOH/g	188 to 195	188 to 195	188 to 195	188 to 200	ISO 3681 ^f
Iodine value, min. (Wijs method)g	175	175	175	_	ISO 3961 ^f
Phosphoric acid test (PAT value) max. % (mass fraction)		ANDARD andards.ite		_	Clause 7
Break	_	Non-visible	_	_	Clause 8
Composition of fatty acids	see Annex A https://standards.iteh.ai	see Annex A./catalog/standards/sist/7	see Annex A 51aed18-b29b-4ed5-8	lab- see <u>Annex A</u>	ISO 12966 (all parts)

^a 23 °C is the standard temperature unless otherwise agreed: for example 20 °C, 25 °C, or 27 °C for tropical countries.

5 Sampling

Take a representative sample of the oil in accordance with ISO 5555.

Prepare the sample in accordance with ISO 661.

6 Clarity

6.1 Raw oil

Heat a well-mixed test portion to $65\ ^{\circ}\text{C}$ and examine it immediately for the presence of insoluble impurities.

b If the acid value of neutral oil has been increased by the addition of fatty acids, then the requirement for colour after heating should be agreed upon between the interested parties, as the limits for neutral oil are not necessarily applicable.

c Stricter requirements may be agreed between the interested parties.

 $^{^{}m d}$ Alkali-refined oil may have its acid value adjusted to other limits for specific uses. In such cases the value should be agreed upon by the interested parties.

e Or to be agreed between the interested parties.

The iodine value and saponification value can also be obtained from the composition of fatty acids.

Raw or refined linseed oil with an iodine value over 190 should be designated "High iodine value linseed oil". The Hanus method, sometimes used for this test, gives different results to the Wijs method; if it is used by agreement between the interested parties, prior agreement on specification limits is essential.

6.2 Alkali-refined, acid-refined and boiled oil

Keep a well-mixed test portion at 15 $^{\circ}$ C to 20 $^{\circ}$ C for 24 h and then examine it for the presence of sediment and for other insoluble matter.

7 Phosphoric acid test (PAT value) (for raw linseed oil only)

7.1 Principle

Thorough mixing of a test portion with 85 % (mass fraction) orthophosphoric acid. Separation of the precipitated material by centrifuging and washing free of oil with acetone, drying and weighing. Reporting the percentage by mass as the PAT value.

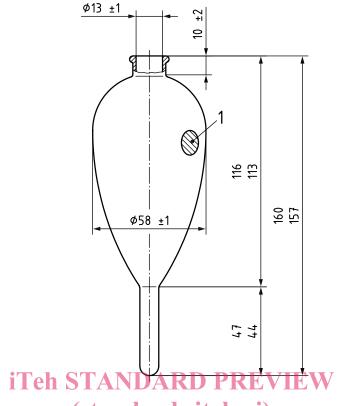
- 7.2 Reagents
- **7.2.1 Orthophosphoric acid**, 85 % (mass fraction), ρ = 1,7 g/ml.
- 7.2.2 Acetone.
- **7.2.3 Filter aid**, of the diatomaceous type.

7.3 Apparatus iTeh STANDARD PREVIEW

Ordinary laboratory apparatus and glassware together with the following. (Standards.iteh.ai)

7.3.1 Sintered glass filter crucibles, of porosity grade P 16 (pore size index 10 μm to 16 μm in accordance with ISO 4793) and of capacity 30 ml. ISO 150:2018

https://standards.iteh.ai/catalog/standards/sist/751aed18-b29b-4ed5-81ab-


The crucibles shall be cleaned periodically with cleaning solution. It is desirable to test the filtration rate of each crucible with pure acetone and discard any that cannot be cleaned to give satisfactory filtration rates.

7.3.2 Agitator, consisting of a horizontal shaft suitably supported and fitted with clamps or a clamping device for holding the pear-shaped centrifuge tubes.

The tubes are held in such a manner that, when the shaft rotates, the tubes are tipped end over end, thus allowing the liquid content of the tube to mix as it flows from one end of the tube to the other. The shaft is rotated mechanically by any means which allows a frequency of (16 ± 2) min⁻¹.

7.3.3 Centrifuge tubes, of capacity 100 ml, pear-shaped as shown in Figure 1, fitted with a stopper.

Dimensions in millimetres

Key

sandblasted spot (for marking) (standards.iteh.ai)

Figure 1 — Pear-shaped centrifuge tube https://standards.ieh.avcatalogstandards/sbv/3 laed18-b29-4ed3-8 lab-55c5be7a176c/iso-150-2018

Centrifuge, capable of holding two or more tubes.

It should be possible to control the rotational frequency of the centrifuge so as to give a relative centrifugal acceleration of 500 g_n to 800 g_n at the tips of the tube (see Table 2), where g_n is the standard acceleration due to gravity.

Table 2 — Rotational frequencies applicable to centrifuges of various diameters of swinga

Diameter of swing		Rotational frequency corresponding to a relative centrifugal acceleration of 800 $g_{\rm n}$
mm	min ⁻¹	min ⁻¹
300	1 727	2 184
320	1 672	2 115
340	1 622	2 052
360	1 576	1 994

The rotational frequency is calculated from the formula

$$n = 1346\sqrt{\frac{c}{d}}$$

where

c is the relative centrifugal acceleration, expressed as a multiple of the standard acceleration of free fall, g;

d is the diameter of swing, in millimetres;

n is the rotational frequency, expressed in revolutions per minute.