INTERNATIONAL STANDARD

ISO/IEC 23008-2

Third edition 2017-10-15 **AMENDMENT 1** 2018-03

Information technology — High efficiency coding and media delivery in heterogeneous environments —

Part 2: High efficiency video coding

iTeh STAMENDMENTE: Additional colour (strepresentation code point

Technologies de l'information — Codage à haute efficacité et livraison des médias dans des environnements hétérogènes https://standards.iteh.avcatalogistandards/sist23dded31-84ec-44ec-b3ec-45102b50Partie 2: Codage vidéō-à haute efficacité

AMENDEMENT 1: Point de codage de représentation de couleur supplémentaire

Reference number ISO/IEC 23008-2:2017/Amd.1:2018(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO/IEC 23008-2:2017/Amd 1:2018</u> https://standards.iteh.ai/catalog/standards/sist/23dded3f-84ec-4fec-b3ec-45102b50a8fb/iso-iec-23008-2-2017-amd-1-2018

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2018

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Fax: +41 22 749 09 47 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards through technical committees established by the respective organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of document should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see <u>www.iso.org/patents</u>).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following URL: www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/IEC JTC 1, Information technology, Subcommittee SC 29, Coding of audio, picture, multimedia and hypermedia information in collaboration with ITU-T. A technically aligned twin text is published as ITU-T H.265.

A list of all parts in the ISO/IEC 23008 series can be found on the ISO website.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/IEC 23008-2:2017/Amd 1:2018 https://standards.iteh.ai/catalog/standards/sist/23dded3f-84ec-4fec-b3ec-45102b50a8fb/iso-iec-23008-2-2017-amd-1-2018

Information technology — High efficiency coding and media delivery in heterogeneous environments —

Part 2: High efficiency video coding

AMENDMENT 1: Additional colour representation code point

Page 19, Clause 4: Abbreviated terms

Page 446, Annex E

Add the following additional items (interspersed with the existing items in alphabetical order):

FCC Federal Communications Commission (of the United States)

NTSC National Television System Committee (of the United States)

SMPTE Society of Motion Picture and Television Engineers

iTeh STANDARD PREVIEW

In E.3.1, replace the semantics of video_full_range_flag; colour_description_present_flag, colour_ primaries, transfer_characteristics, and matrix_coeffs, including <u>Tables E.3</u>, <u>E.4</u>, and <u>E.5</u>, with the following. <u>ISO/IEC 23008-2:2017/Amd 1:2018</u>

https://standards.iteh.ai/catalog/standards/sist/23dded3f-84ec-4fec-b3ec-45102b50a8fb/iso-iec-23008-2-2017-amd-1-2018

video_full_range_flag indicates the black level and range of the luma and chroma signals as derived from E'_{Y} , E'_{PB} , and E'_{PR} or E'_{R} , E'_{G} , and E'_{B} real-valued component signals.

When the video_full_range_flag syntax element is not present, the value of video_full_range_flag is inferred to be equal to 0.

colour_description_present_flag equal to 1 specifies that colour_primaries, transfer_characteristics, and matrix_coeffs are present. colour_description_present_flag equal to 0 specifies that colour_primaries, transfer_characteristics, and matrix_coeffs are not present.

colour_primaries indicates the chromaticity coordinates of the source primaries as specified in <u>Table E.3</u> in terms of the CIE 1931 definition of x and y as specified in ISO 11664-1.

When the colour_primaries syntax element is not present, the value of colour_primaries is inferred to be equal to 2 (the chromaticity is unspecified or is determined by the application). Values of colour_primaries that are identified as reserved in <u>Table E.3</u> are reserved for future use by ITU-T | ISO/IEC and shall not be present in bitstreams conforming to this version of this document. Decoders shall interpret reserved values of colour_primaries as equivalent to the value 2.

Value	Primaries			Informative remark	
0	Reserved			For future use by ITU-T ISO/IEC	
1	primary	Х	У	Rec. ITU-R BT.709–6	
	green	0.300	0.600	Rec. ITU-R BT.1361–0 conventional colour	
	blue	0.150	0.060	gamut system and extended colour gamut system (historical)	
	red	0.640	0.330	IEC 61966-2-1 sRGB or sYCC	
	white D65	0.312 7	0.329 0	IEC 61966-2-4	
				SMPTE RP 177 (1993) Annex B	
2	Unspecified			Image characteristics are unknown or are determined by the application.	
3	Reserved			For future use by ITU-T ISO/IEC	
4	primary	X	у	Rec. ITU-R BT.470–6 System M (historical)	
	green	0.21	0.71	NTSC Recommendation for transmission	
	blue	0.14	0.08	standards for colour television (1953)	
	red	0.67	0.33	FCC Title 47 Code of Federal Regulations	
	white C	0.310	0.316	(2003) 73.682 (a) (20)	
5	primary	X	У	Rec. ITU-R BT.470–6 System B, G	
	green	_{0.2} jTeh	STANDARI	(historical)	
	blue	0.15	of tandards.	Rec. ITU-R BT.601–7 625	
	red	0.64	0.33	Rec. ITU-R BT.1358–0 625 (historical)	
	white D65	0.312 7	0.3296EC 23008-2:2017 ards.iteh.ai/catalog/standards/s	Rec. IEU:8 BT.1700-0 625 PAL and 625 SECAM4fec-b3ec-	
6	primary		51 9 2b50a8fb/iso-iec-23008-2	Rec.7TU-RIBT.601-7 525	
	green	0.310	0.595	Rec. ITU-R BT.1358–1 525 or 625	
	blue	0.155	0.070	(historical)	
	red	0.630	0.340	Rec. ITU-R BT.1700–0 NTSC	
	white D65	0.312 7	0.329 0	SMPTE ST 170 (2004)	
				(functionally the same as the value 7)	
7	primary	Х	У	SMPTE ST 240 (1999, historical)	
	green	0.310	0.595	(functionally the same as the value 6)	
	blue	0.155	0.070		
	red	0.630	0.340		
	white D65	0.312 7	0.329 0		
8	primary	Х	У	Generic film (colour filters using Illuminant C)	
	green	0.243	0.692 (Wratten 58)		
	blue	0.145	0.049 (Wratten 47)		
	red	0.681	0.319 (Wratten 25)		
	white C	0.310	0.316		
9	primary	Х	у	Rec. ITU-R BT.2020–2	
	green	0.170	0.797	Rec. ITU-R BT.2100–1	
	blue	0.131	0.046		
	red	0.708	0.292		
	white D65	0.312 7	0.329 0		

Table E.3 — Colour primaries interpretation using the colour_primaries syntax element

Value		Primar	ies	Informative remark
10	primary	Х	у	SMPTE ST 428-1 (2006)
	green (Y)	0.0	1.0	(CIE 1931 XYZ)
	blue (Z)	0.0	0.0	
	red (X)	1.0	0.0	
	centre white	1÷3	1 ÷ 3	
11	primary	Х	У	SMPTE RP 431-2 (2011)
	green	0.265	0.690	
	blue	0.150	0.060	
	red	0.680	0.320	
	white	0.314	0.351	
12	primary	Х	У	SMPTE EG 432-1 (2010)
	green	0.265	0.690	
	blue	0.150	0.060	
	red	0.680	0.320	
	white D65	0.312 7	0.329 0	
1321	Reserved			For future use by ITU-T ISO/IEC
22	primary		YUANDIN	EBU Tech. 3213-E (1975)
	green	0.295 (Sta	metards.iteh.	ai)
	blue	0.155	0.077	210
	red https://s	0.630 ISO/I	EC 23008-2:2017/Amd 1:2 C.340 (catalog/standards/sist/23dde	<u>U18</u> d3f-84ec-4fec-b3ec-
	white D65	0.312 7b50a8	/catalog/standards/sist/23dde 1 <mark>0/329</mark> e0-23008-2-2017-ar	nd-1-2018
23255	Reserved			For future use by ITU-T ISO/IEC

 Table E.3 (continued)

transfer_characteristics, as specified in Table E.4, either indicates the reference opto-electronic transfer characteristic function of the source picture as a function of a source input linear optical intensity L_c with a nominal real-valued range of 0 to 1 or indicates the inverse of the reference electro-optical transfer characteristic function as a function of an output linear optical intensity L_0 with a nominal real-valued range of 0 to 1. For interpretation of entries in Table E.4 that are expressed in terms of multiple curve segments parameterized by the variable α over a region bounded by the variable β or by the variables β and γ , the values of α and β are defined to be the positive constants necessary for the curve segments that meet at the value β to have continuity of value and continuity of slope at the value β , and the value of γ , when applicable, is defined to be the positive constant necessary for the associated curve segments to meet at the value γ . For example, for transfer_characteristics equal to 1, 6, 11, 14, or 15, α has the value $1 + 5.5 * \beta = 1.099 296 826 809 442... and <math>\beta$ has the value 0.018 053 968 510 807....

When the transfer_characteristics syntax element is not present, the value of transfer_characteristics is inferred to be equal to 2 (the transfer characteristics are unspecified or are determined by the application). Values of transfer_characteristics that are identified as reserved in Table E.4 are reserved for future use by ITU-T | ISO/IEC and shall not be present in bitstreams conforming to this version of this document. Decoders shall interpret reserved values of transfer_characteristics as equivalent to the value 2.

NOTE 5 As indicated in <u>Table E.4</u>, some values of transfer_characteristics are defined in terms of a reference opto-electronic transfer characteristic function and others are defined in terms of a reference electro-optical transfer characteristic function, according to the convention that has been applied in other documents. In the cases of Rec. ITU-R BT.709-6 and Rec. ITU-R BT.2020-2 (which could be indicated by transfer_characteristics equal to 1, 6, 14, or 15), although the value is defined in terms of a reference opto-electronic transfer characteristic function, a suggested corresponding reference electro-optical transfer characteristic function for flat panel displays used in HDTV studio production has been specified in Rec. ITU-R BT.1886-0.

Value	Transfer ch	naracteristics	Informative remark	
0	Reserved		For future use by ITU-T ISO/IEC	
1	$V = \alpha * L_c^{0.45} - (\alpha - 1)$	for $1 \ge L_c \ge \beta$	Rec. ITU-R BT.709–6	
	$V = 4.500 * L_c$	for $\beta > L_c >= 0$	Rec. ITU-R BT.1361–0 conventional colour gamut system (historical)	
			(functionally the same as the values 6, 14, and 15)	
2	Unspecified		Image characteristics are unknown or are determined by the application.	
3	Reserved		For future use by ITU-T ISO/IEC	
4	Assumed display gamma 2.2		Rec. ITU-R BT.470–6 System M (historical)	
			NTSC Recommendation for transmission standards for colour television (1953)	
			FCC Title 47 Code of Federal Regula- tions (2003) 73.682 (a) (20)	
5	Assumed display gamma 2.8	STANDARD PRE	Rec. ITU-R BT.470–6 System B, G (historical)	
		(standards.iten.a	Rec. ITU-R BT.1700–0 625 PAL and 625 SECAM	
6	$V = \alpha * L_c^{0.45} - (\alpha - 1)$	for $1 \ge L_c \ge \beta$	Rec. ITU-R BT.601–7 525 or 625	
		for $1 \ge L_c \ge \beta$ <u>ISO/IEC 23008-2:2017/Amd 1:201</u> df. f. f. a. C. a. a. b. c. a.	Rec. ITU-R BT.1358–1 525 or 625 (historical)	
	101	020000000,50 60 20000 2 2017 uiki	Rec. ITU-R BT.1700–0 NTSC	
			SMPTE ST 170 (2004)	
			(functionally the same as the values 1, 14, and 15)	
7	$V = \alpha * L_c^{0.45} - (\alpha - 1)$	for $1 \ge L_c \ge \beta$	SMPTE ST 240 (1999, historical)	
	$V = 4.0 * L_c$	for $\beta > L_c >= 0$		
8	V = L _c	for all values of L _c	Linear transfer characteristics	
9	$V = 1.0 + Log10(L_c) \div 2$	for $1 \ge L_c \ge 0.01$	Logarithmic transfer characteristic	
	V = 0.0	for $0.01 > L_c >= 0$	(100:1 range)	
10	$V = 1.0 + Log10(L_c) \div 2.5$	for $1 \ge L_c \ge Sqrt(10) \div 1\ 000$	Logarithmic transfer characteristic	
	V = 0.0	for Sqrt(10) \div 1 000 > L _c >= 0	(100 * Sqrt(10) : 1 range)	
11	$V = \alpha * L_c^{0.45} - (\alpha - 1)$	for $L_c \ge \beta$	IEC 61966-2-4	
	$V = 4.500 * L_c$	for $\beta > L_c > -\beta$		
	$V = -\alpha * (-L_c)^{0.45} + (\alpha - 1)$	for $-\beta \ge L_c$		
12		for 1,33 > L_c > = β	Rec. ITU-R BT.1361–0 extended	
	$V = 4.500 * L_c$	for $\beta > L_c >= -\gamma$	colour gamut system (historical)	
	$V = -[\alpha^* (-4^* L_c)^{0.45} - (\alpha - 1)] \div 4$	for $-\gamma > L_c >= -0.25$		
13	$V = \alpha * L_c(1 \div 2.4) - (\alpha - 1)$		IEC 61966-2-1 sRGB or sYCC	
	$V = 12.92 * L_c$	for $\beta > L_c >= 0$		

Table E.4 — Transfer characteristics interpretation using the transfer_characteristics syntax element

Value	Transfe	Informative remark	
14	$V = \alpha * L_{c}^{0.45} - (\alpha - 1)$ $V = 4.500 * L_{c}$	for $1 \ge L_c \ge \beta$ for $\beta \ge L_c \ge 0$	Rec. ITU-R BT.2020–2 (functionally the same as the values 1, 6, and 15)
15	$V = \alpha * L_c^{0.45} - (\alpha - 1)$ $V = 4.500 * L_c$	for $1 \ge L_c \ge \beta$ for $\beta \ge L_c \ge 0$	Rec. ITU-R BT.2020–2 (functionally the same as the values 1, 6, and 14)
16	$V = ((c_1 + c_2 * L_0^n) \div (1 + c_3))$ $c_1 = c_3 - c_2 + 1 = 3 424 \div 4 (0)$	SMPTE ST 2084 (2014) for 10, 12, 14, and 16-bit systems	
	c ₂ = 32 * 2 413 ÷ 4 096 = 18	Rec. ITU-R BT.2100–1 perceptual quantization (PQ) system	
	c ₃ = 32 * 2 392 ÷ 4 096 = 18 m = 128 * 2 523 ÷ 4 096 = 7		
	n = 0.25 * 2 610 ÷ 4 096 = 0		
	for which L_0 equal to 1 for correspond to a reference of		
17	$V = (48 * L_0 \div 52.37)^{(1 \div 2.6)}$	for all values of L _o	SMPTE ST 428-1 (2006)
	for which L_0 equal to 1 for correspond to a reference of		
18	$V = a * Ln(12 * L_c - b) + c$ $V = Sart(3) * L_c - b S T$	Association of Radio Industries and Businesses (ARIB) STD-B67	
	a = 0.178 832 77, b = 0.284	Rec. ITU-R BT.2100–1 hybrid log-gamma (HLG) system	
19255	Reserved	For future use by ITU-T ISO/IEC	

 Table E.4 (continued)

NOTE 6 For transfer<u>characteristics</u> equals to 18; the formulae given in <u>Table E.4</u> are normalized for a source input linear optical intensity <u>Lewith a nominal real-valued</u> range of 0 to 1. An alternative scaling that is mathematically equivalent is used in ARIB STD-B67 with the source input linear optical intensity having a nominal real-valued range of 0 to 12.

matrix_coeffs describes the matrix coefficients used in deriving luma and chroma signals from the green, blue, and red, or Y, Z, and X primaries, as specified in <u>Table E.5</u>.

matrix_coeffs shall not be equal to 0 unless one or more of the following conditions are true:

- BitDepth_C is equal to BitDepth_Y.
- chroma_format_idc is equal to 3 (the 4:4:4 chroma format).

The specification of the use of matrix_coeffs equal to 0 under all other conditions is reserved for future use by ITU-T | ISO/IEC.

matrix_coeffs shall not be equal to 8 unless one of the following conditions is true:

- BitDepth_C is equal to BitDepth_Y,
- BitDepth_C is equal to BitDepth_Y + 1 and chroma_format_idc is equal to 3 (the 4:4:4 chroma format).

The specification of the use of matrix_coeffs equal to 8 under all other conditions is reserved for future use by ITU-T | ISO/IEC.

When the matrix_coeffs syntax element is not present, the value of matrix_coeffs is inferred to be equal to 2 (unspecified).