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Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical 
Commission) form the specialized system for worldwide standardization. National bodies that 
are members of ISO or IEC participate in the development of International Standards through 
technical committees established by the respective organization to deal with particular fields of 
technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other 
international organizations, governmental and non-governmental, in liaison with ISO and IEC, also 
take part in the work.

The procedures used to develop this document and those intended for its further maintenance are 
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for 
the different types of document should be noted. This document was drafted in accordance with the 
editorial rules of the ISO/IEC Directives, Part 2 (see www​.iso​.org/​directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject 
of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent 
rights. Details of any patent rights identified during the development of the document will be in the 
Introduction and/or on the ISO list of patent declarations received (see www​.iso​.org/​patents) or the IEC 
list of patent declarations received (see http://​patents​.iec​.ch). 

Any trade name used in this document is information given for the convenience of users and does not 
constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and 
expressions related to conformity assessment, as well as information about ISO's adherence to the 
World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www​.iso​.org/​
iso/​foreword​.html. 

This document was prepared by Joint Technical Committee ISO/IEC JTC  1, Information technology, 
Subcommittee SC 27, Information security, cybersecurity and privacy protection.

This second edition cancels and replaces the first edition (ISO/IEC 18032:2005), which has been 
technically revised.

The main changes compared to the previous edition are as follows:

—	 the Frobenius-Grantham primality test in 6.2, the Lehmann primality test in 6.3 and Maurer’s 
algorithm in 8.3.1, have been removed;

–	 the Elliptic curve primality proving algorithm, The Shawe-Taylor algorithm and the algorithm to 
generate primes with side conditions, have been added or substantially revised.

Any feedback or questions on this document should be directed to the user’s national standards body. A 
complete listing of these bodies can be found at www​.iso​.org/​members​.html.
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Information security — Prime number generation

1	 Scope

This document specifies methods for generating and testing prime numbers as required in 
cryptographic protocols and algorithms.

Firstly, this document specifies methods for testing whether a given number is prime. The testing 
methods included in this document are divided into two groups:

—	 probabilistic primality tests, which have a small error probability. All probabilistic tests described 
here can declare a composite to be a prime;

—	 deterministic methods, which are guaranteed to give the right verdict. These methods use so-called 
primality certificates.

Secondly, this document specifies methods to generate prime numbers. Again, both probabilistic and 
deterministic methods are presented.

NOTE	 It is possible that readers with a background in algorithm theory have already had previous encounters 
with probabilistic and deterministic algorithms. The deterministic methods in this document internally still 
make use of random bits (to be generated via methods described in ISO/IEC 18031), and “deterministic” only 
refers to the fact that the output is correct with probability one.

Annex A provides error probabilities that are utilized by the Miller-Rabin primality test.

Annex  B describes variants of the methods for generating primes so that particular cryptographic 
requirements can be met.

Annex C defines primitives utilized by the prime generation and verification methods.

2	 Normative references

The following documents are referred to in the text in such a way that some or all of their content 
constitutes requirements of this document. For dated references, only the edition cited applies. For 
undated references, the latest edition of the referenced document (including any amendments) applies.

ISO/IEC 18031, Information technology — Security techniques — Random bit generation

3	 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

—	 ISO Online browsing platform: available at https://​www​.iso​.org/​obp

—	 IEC Electropedia: available at http://​www​.electropedia​.org/​

3.1
composite number
composite
integer for which divisors exist that are not trivial divisors (3.8)

© ISO/IEC 2020 – All rights reserved� 1
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3.2
deterministic random bit generator
DRBG
random bit generator that produces a random-appearing sequence of bits by applying a deterministic 
algorithm to a suitably random initial value called a seed and, possibly, some secondary inputs on which 
the security of the random bit generator does not depend

3.3
entropy
measure of the disorder, randomness or variability in a closed system

[SOURCE: ISO/IEC 18031:2011, 3.11]

3.4
Jacobi symbol
Jacobi symbol of a positive integer a with respect to an odd integer n
product of the Legendre symbols of a with respect to the prime factors of n, including multiplicity (3.5)

Note 1 to entry: If the prime factor p occurs with multiplicity m ≥ 1 in the factorization of n, then the Legendre 
symbol of a with respect to p occurs with multiplicity m in the product that yields the Jacobi symbol of a with 
respect to n.

Note 2 to entry: The Legendre symbol of a positive integer a with respect to a prime number p is the value

a(p - 1)/2 mod p

3.5
multiplicity
multiplicity of a prime divisor p of n
largest positive integer e with pe dividing n

3.6
primality certificate
mathematical proof that a given integer is indeed a prime

Note 1 to entry: For a small integer, primality is most efficiently proven by trial division. In this case, the primality 
certificate can therefore be empty.

3.7
prime number
prime
positive integer for which there exist only trivial divisors (3.8)

3.8
trivial divisors
trivial divisors of a nonzero integer N
1, -1, N and –N

Note 1 to entry: Any nonzero integer N is divisible by (at least) 1, -1, N and –N.

4	 Symbols and abbreviated terms

a div n for integers a and n, with n ≠ 0, a div n is the unique integer s satisfying a = s · n 
+ r where 0 ≤ r < n.

a mod n for integers a and n, with n ≠ 0, a mod n is the unique non-negative integer r 
satisfying a = (a div n) · n + r.

C primality certificate
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C(N) primality certificate for the number N

C0(N) empty primality certificate, indicating that trial division should be used to verify 
that N is a prime

exp(c) natural exponential function evaluated at c, i.e. ec where e ≈ 2,718 28

gcd greatest common divisor

Jacobi(a,N) Jacobi symbol for an integer a with respect to a nonzero odd integer N

k number of bits in N

L limit below which primality is verified by trial division

Lucas(D, K, N) Kth element of the Lucas sequence modulo N with discriminant D

ln(a) natural logarithm of a with respect to the base e ≈ 2,718 28

logb(a) logarithm of a with respect to base b

min{a,b} minimum of the numbers a and b

N candidate number to be tested for primality, where N is always a positive, 
odd number

sgn(D) sign of a number, i.e. sgn(D) = 1 if D ≥ 0 and -1 otherwise.

T (probabilistic) test for primality

ZN the set of the integers 0, 1, 2, ..., N-1, representing the ring of integers modulo N

ZN* subset of ZN containing the numbers that have a multiplicative inverse modulo 
N (e.g., if N is prime, ZN* consists of the integers 1, 2, ..., N-1)

β parameter that determines the lower bound of the entropy of the output of a 
prime generation algorithm

μ maximal number of steps in an incremental search for a prime

⎿x⏌ largest integer smaller than or equal to x

⎾x⏋ smallest integer greater than or equal to x

√n principal (i.e. non-negative) square root of a non-negative number n

5	 Trial division

The primality of an integer N can be proven by means of trial division. This shall be done in the 
following way:

a)	 For all primes p ≤ √N:

1)	 if N mod p = 0 then return “N composite” and stop;

b)	 return “N prime” and stop.

For small integers N, trial division is less computationally expensive than other primality tests. 
Implementations of any primality test described in this document may define a trial division bound 
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L, below which trial division is used in order to prove the primality of integers. This document sets no 
value for L except for a lower bound, i.e. L > 6.

NOTE 1	 It is assumed that the set of prime numbers below a certain size are already known. One practical way 
to implement the test is to have a pre-computed table of the first few primes, do trial division by these, and then 
simply trial divide by all odd integers up to the square root.

NOTE 2	 The size of integers for which trial division is less computationally expensive than another primality 
test depends on the test and its implementation. A possible value for L can be L = 1010.

NOTE 3	 A binned gcd method, as described in ANSI X9.80-2010,[1] can be more efficient than trial division for 
certain implementations.

6	 Probabilistic primality test

6.1	 General

A probabilistic primality test takes a positive, odd integer N as input and returns “N accepted” or “N 
composite”. The Miller-Rabin primality test described in 6.3 will always output “N accepted” when N 
is a prime number. However, if N is a composite number, then an instance of the test can erroneously 
return “N accepted”. In order to reduce the probability of such errors, one usually performs several 
iterations of testing on N, using different choices for the random values employed.

The probabilistic tests in this clause shall only be applied to odd integers that are greater or equal to 
the trial division bound L. If N < L, trial division shall be applied to determine the primality of N.

6.2	 Requirements

In order for a number to be accepted as a (probable) prime, this document requires the error probability, 
i.e. the probability the number is composite, to be at most 2-100. This provides significant confidence 
that any candidate prime being tested for primality that meets this threshold is indeed prime. The 2-100 
probability bound is achieved by requiring a sufficient number of Miller-Rabin tests, depending on how 
the number was generated (see Annex A).

6.3	 Miller-Rabin primality test

The Miller-Rabin primality test is based on the following observation. Suppose that N actually is an odd 
prime number and that r and s are the unique positive integers such that N – 1 = 2r s, with s odd. For 
each positive integer b < N, exactly one of the following three conditions will be satisfied:

—	 bs mod N = 1; 

—	 bs mod N = N – 1; or

—	 bs
i

( )2 mod N = N – 1, for some i with 0 < i < r.

Equivalently, if N ≥ 3 is an odd integer and there exists a positive integer b < N that does not satisfy 
any of the conditions above, then N is a composite number. A probabilistic primality test based on this 
observation shall be applied to any odd integer N ≥ L, as follows.

Initialization

a)	 Determine positive integers r and s such that N – 1 = 2r s, where s is odd.

b)	 Set rounds = 0.

Perform t iterations (rounds) of Miller-Rabin testing (for integer t ≥ 1).

c)	 Choose a random integer b such that 2 ≤ b ≤ N – 2.

﻿
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d)	 Set y = bs mod N.

e)	 If y = 1 or y = N – 1,

1)	 set rounds = rounds + 1;

2)	 if rounds <t;

go to step c)

else

return “N probably prime” and stop testing.

f)	 For i = 1 to r – 1, do:

1)	 set y = y2 mod N;

2)	 if y = N – 1;

i)	 set rounds = rounds + 1;

ii)	 if rounds < t, go to step c);

	 otherwise return “N probably prime” and stop testing.

g)	 Return “N composite” and stop testing.

The candidate N is accepted as being (probably) prime at the conclusion of the iterated testing process 
if and only if N passes all t rounds of Miller-Rabin primality testing (with each choice of b satisfying 
one of the conditions associated with primality). The testing process returns “N composite” and is 
immediately halted if, for some choice of b, none of the tested conditions are satisfied (see A.2 and A.3 to 
determine the number of iterations required by this document).

The integer b generated in step c) shall be generated using a random bit generator that meets the 
specifications of ISO/IEC 18031 and converted to a number using the conversion methods in Annex C 
or ISO/IEC 18031. For each iteration, the process of selecting a value for b in step c) is performed anew.

NOTE 1	 The rationale for the base b being randomly generated is two-fold. Firstly, the average case error 
estimates adopted from Reference [9] and used in A.3 assume b is random. Secondly, for a known base b, it is not 
difficult to construct composite integers that will pass a round of Miller-Rabin with respect to that base.

NOTE 2	 Step f) is only applicable when r > 1, i.e. if N mod 4 = 1.

7	 Deterministic primality verification methods

7.1	 General

Deterministic primality verification methods use primality certificates in order to verify the primality 
of a given number. This clause specifies the content of two types of primality certificates:

—	 primality certificates based on elliptic curves;

—	 primality certificates for primes generated by The Shawe-Taylor algorithm (see 8.4.2).

A primality certificate contains information that enables efficient verification that a given number is a 
prime. For both types of certificates described in this document, small numbers (i.e. numbers smaller 
than the trial division bound L) shall be verified to be primes by trial division. Let C0 denote the empty 
primality certificate for such numbers.

An elliptic curve primality certificate can be computed given any prime. Hence, the methods for 
computing this certificate may be used to verify primality. The primality certificate obtained in The 
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Shawe-Taylor algorithm is generated as part of the process of generating a prime, and cannot be 
efficiently computed for an arbitrary prime (after the prime has been generated).

7.2	 Elliptic curve primality proving algorithm

7.2.1	 General

Information regarding elliptic curves can be obtained from ISO/IEC 15946-1.

7.2.2	 Elliptic curve primality certificate generation

To generate a certificate of primality for an odd integer N  ≥  L, the method described below is used 
recursively. If the method succeeds, the total collection of data generated by the method is organized in 
a primality certificate, C(N). Verifying C(N), and thereby proving that N is prime, is considerably faster 
than generating the certificate.

On input of an integer N ≥ L, with gcd(N,6) = 1, the elliptic curve primality proving algorithm shall start 
with the following initializations.

a)	 Set S = { N } (the set of integers that require a primality certificate), and set Certs = { } (a contentless 
certificate).

In the following steps, various primality tests are applied to an integer r selected from set S. If a 
test (provisionally) accepts the primality of r, it returns a certificate C(r), and, possibly, a set of 
probable primes { qi }, in which case the certificate shall not be used to prove that r is prime, unless 
each qi has been proven prime. If necessary, the algorithm shall proceed recursively, attempting 
to generate a certificate of primality for each of those probable primes. In the course of generating 
those certificates, additional probable primes may be added to the set of integers that require 
certificates. The algorithm shall continue until either there are no more probable primes to process 
or the processing is aborted because some integer requiring a certificate is determined to be a 
composite number.

b)	 Select a value for r from S and set S = S − { r } (i.e. remove the element r from S).

1)	 Apply either:

—	 Pocklington’s primality test to r (see D.2) and, if that test is inconclusive, also apply the 
Deterministic Lucas primality test to r (see D.4.2); or

—	 the Brillhart-Lehmer-Selfridge test to r (see D.5).

	 In either case, when the testing is performed, allow probable primes ≥ L to occur (with 
multiplicity) in the partial factorizations of r − 1 and/or r + 1.

2)	 If the testing indicates r is composite, return “r composite” (along with the value of r) and stop.

3)	 If the testing is inconclusive, proceed to step c).

4)	 If the testing indicates that r is prime, then adjoin C(r) to Certs, where C(r) is the certificate for r 
returned by the successful test, and set S = S ∪ { qi }, where { qi } is the set of probable primes (if 
any) appearing in the factorizations of r − 1 and/or r + 1 (whichever were used in the testing); 
if S is not empty, repeat step b). Otherwise, return “N prime” along with C(N) = Certs, and stop.

c)	 Generate an elliptic curve E given by y2 = x3+ax+b for some integers a, b.

1)	 Apply the elliptic curve primality test to r (see D.6). When the test is performed, allow probable 
primes ≥L to occur (with multiplicity) in the partial factorization of the order of Er (the curve E 
reduced modulo r).

2)	 If the test indicates that r is composite, return “r composite” along with the value of r and stop.
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3)	 If the test is inconclusive, repeat step c) with a new choice of elliptic curve.

4)	 If the test indicates that r is prime, then adjoin C(r) to Certs, where C(r) is the certificate for r 
returned by the successful test, and set S = S ∪ { qi }, where { qi } is the set of probable primes (if 
any) appearing in the factorization of the order of Er; if S is not empty, go to step b). Otherwise, 
return “N is prime” along with C(N) = Certs, and stop.

The probable prime factors (if any) appearing in steps b) and c) are required to be greater than or equal 
to the trial division bound. The primality of smaller factors shall be ascertained using trial division.

During the recursion, the tests in step b) can be skipped. It is included in the algorithm’s description for 
efficiency purposes.

If the primality of N is inconclusive, the test may be executed again. The test may not be rerun in full 
if partial results of the previous execution are retained (e.g., the value of Certs when testing process 
was stopped and the composite r value that caused the early termination). It can be sufficient to back 
the recursion step one level prior to the point of failure. Varying choices of curves in step c) and/or 
optionally skipping step b) is likely to result in different sets of probable primes to test.

In case r is composite, the elliptic curve test in step c) is likely to be inconclusive and so the algorithm 
can fail to terminate. As a precaution, a limit on the number of iterations of step c) may be enforced.

NOTE	 The elliptic curve E in step c) can be generated using the CM method described in D.8.

7.2.3	 Elliptic curve primality certificate verification

An elliptic curve primality certificate for an integer N ≥ L, with gcd(N, 6) = 1, is a set of (interdependent) 
certificates, C(N) = { Ci }, where each Ci asserts the primality of some integer ri ≥ L, and exactly one of the 
ri is equal to N. Each Ci is a certificate resulting from the execution of either Pocklington's test (D.2.2), the 
Deterministic Lucas test (D.4.2), the Brillhart-Selfridge-Lehmer test (D.5) or the elliptic curve test (D.6).

If Ci asserts the primality of ri based (in part) on the assumed primality of one or more other integers 
qj  ≥  L, then the certificate Ci (and hence the primality of ri) shall only be successfully verified after 
the primality of each of the qj is accepted via the verification of their certificates, which shall also be 
included in C(N). If Ci asserts the primality of ri based (in part) on the assumed primality of any integers 
less than L, then trial division shall be used to verify the primality of those integers as part of the 
verification of Ci.

The elliptic curve primality certificate C(N) = { Ci } is accepted only if every Ci is accepted (and exactly 
one of the ri is equal to N). If the verification of any Ci fails, then the elliptic curve primality certificate 
for N shall be rejected.

Verifying each of the individual certificates Ci shall be done as specified in Annex D.

7.3	 Primality certificate based on The Shawe-Taylor algorithm

This type of primality certificate C is a collection of certificates { Ci } which shall be computed (only) 
during the generation process of the prime number using the process described in 8.4.2 (The Shawe-
Taylor algorithm). The certificates Ci are the result of the Pocklington test (see D.2.2) whose proofs of 
primality have the following structure:

Proof(ri) =(ri, qi, ai)

where ri, qi, and ai are integers. The certificate Ci, which asserts that ri is prime, is verified once it passes 
the checks in C.2 and qi is proven to be (an odd) prime (e.g., by trial division or by verifying its own 
certificate, which has also been included in C). The last certificate to be verified, say C1 = (N, q1, a1), 
contains the value N. If all of the Ci are verified (and are confirmed to chain up to N), then C itself is 
verified and N is accepted as being prime.
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8	 Prime number generation

8.1	 General

This clause specifies two approaches to prime number generation. The first approach is to employ the 
probabilistic Miller-Rabin primality test on randomly chosen candidates (8.3). [Optionally, a probable 
prime, N, generated by such methods may subsequently be proven prime by generating an elliptic curve 
primality certificate (7.2) for N.] The second approach to prime number generation is to employ the 
deterministic Shawe-Taylor method (8.4) which yield integers known to be prime. This method can also 
produce primality certificates as part of the generation process.

The methods in this clause generate primes in the interval (2k-1, 2k) for some k. To generate primes 
with additional constraints, such as generating primes in a more restrictive interval and/or primes that 
satisfy certain congruence conditions, the methods in B.2 shall be used. Examples of primes generated 
with additional constraints are given in Annex E.

These techniques shall only be applied to generate primes greater or equal to the trial division bound 
L. Generating primes less than L can be simply done by selecting integers less than L and testing for 
primality using trial division.

8.2	 Requirements

In order for a prime number generation algorithm to conform to this document, the algorithm shall:

—	 generate random bits using a deterministic random bit generator that meets the specifications of 
ISO/IEC 18031;

—	 generate random numbers from sequences of random bits using the conversion methods specified 
in Annex C or ISO/IEC 18031;

—	 ensure, in the case of non-provable primes (8.3), that the error probability that a composite passes 
as prime is at most 2-100.

Annex A contains more information on how the algorithms in 8.3 shall satisfy the 2-100 error properties.

For applications where the primes generated need to be secret, the following also applies:

—	 the (secret) entropy used in the random bit generator to produce the output number shall satisfy 
the requirements of ISO/IEC 18031 and shall be at least B bits where B is the security level of that 
application;

—	 if additional constraints are placed on the prime being generated (B.2), the constraints shall be 
limited so as not to affect the security of the system and the requirements in Annex B shall apply.

In the case of generating primes for use in RSA, B should be at least 112 for 1 024-bit primes, 128 for 1 536-
bit primes, 192 for 3 840-bit primes, and 256 for 7 680-bit primes. ISO/IEC 18031 requires a minimum 
entropy of 120 bits to avoid collisions. In the case of RSA, collisions can lead to primes repeating for 
different RSA moduli. Such primes can be recovered by computing a gcd among the RSA moduli.

NOTE	 Limiting the total number of constraints is necessary to avoid Coppersmith-style attacks,[7][14] e.g. 
these attacks can factor RSA moduli if roughly half the bits of a prime factor are known. If the constraints (such 
as the number of known bits) are limited, then these attacks do not apply. For example, requiring an integer n < 2k 
to lie in the interval (2k-2 + 2k-1, 2k) with n mod 4 = 3, and gcd(n-1, e ) = 1 for some odd encryption exponent gives 
less than 5 bits of constraint. If the interval is replaced with (2k-1√2, 2k), the total constraint is less than 4,5 bits. 
Generating a k–bit number n with n mod q = 1 for some randomly generated (and secret) integer q of size m bits 
places roughly two bits of constraint on n (since n can be expressed as n = 1 + u q where u, q are both k-m, m-bit 
numbers respectively). Further requiring q to be prime adds a few additional bits of constraint, approximately 
log2(m) – 0,528 bits by the prime number theorem.

When regenerating (secret) primes from a fixed seed, care should be taken so as to avoid side-channel 
attacks.
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