Utility connections in port — Part 3 Low voltage shore connection (LVSC) systems — General requirements

Alimentation des navires à quai — Partie 3 Systèmes de connexion à quai à basse tension — Exigences générales

This document was developed under the Partner Standards Development Organization cooperation agreement between ISO and IEEE, as approved by Council Resolution 49/2007, and is submitted to a parallel enquiry vote by the ISO/IEC national bodies and IEEE.

In accordance with the provisions of Council Resolution 21/1986 this document is circulated in the English language only.

Conformément aux dispositions de la Résolution du Conseil 21/1986, ce document est distribué en version anglaise seulement.

THIS DOCUMENT IS A DRAFT CIRCULATED FOR COMMENT AND APPROVAL. IT IS THEREFORE SUBJECT TO CHANGE AND MAY NOT BE REFERRED TO AS AN INTERNATIONAL STANDARD UNTIL PUBLISHED AS SUCH. BECAUSE IT IS AN UNAPPROVED DRAFT, THIS DOCUMENT SHALL NOT BE USED FOR ANY CONFORMANCE/COMPLIANCE PURPOSES.

IN ADDITION TO THEIR EVALUATION AS BEING ACCEPTABLE FOR INDUSTRIAL, TECHNOLOGICAL, COMMERCIAL AND USER PURPOSES, DRAFT INTERNATIONAL STANDARDS MAY ON OCCASION HAVE TO BE CONSIDERED IN THE LIGHT OF THEIR POTENTIAL TO BECOME STANDARDS TO WHICH REFERENCE MAY BE MADE IN NATIONAL REGULATIONS.

RECIPIENTS OF THIS DRAFT ARE INVITED TO SUBMIT, WITH THEIR COMMENTS, NOTIFICATION OF ANY RELEVANT PATENT RIGHTS OF WHICH THEY ARE AWARE AND TO PROVIDE SUPPORTING DOCUMENTATION.

© International Organization for Standardization, 2016
© International Electrotechnical Commission, 2016
© IEEE 2016
IEEE Notice to Users

Use of an IEEE Standard is wholly voluntary. The IEEE disclaims liability for any personal injury, property or other damage, of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, or reliance upon this, or any other IEEE Standard document.

The IEEE does not warrant or represent the accuracy or content of the material contained herein, and expressly disclaims any express or implied warranty, including any implied warranty of merchantability or fitness for a specific purpose, or that the use of the material contained herein is free from patent infringement. IEEE Standards documents are supplied “AS IS.”

The existence of an IEEE Standard does not imply that there are no other ways to produce, test, measure, purchase, market, or provide other goods and services related to the scope of the IEEE Standard. Furthermore, the viewpoint expressed at the time a standard is approved and issued is subject to change brought about through developments in the state of the art and comments received from users of the standard. Every IEEE Standard is subjected to review at least every five years for revision or reaffirmation. When a document is more than five years old and has not been reaffirmed, it is reasonable to conclude that its contents, although still of some value, do not wholly reflect the present state of the art. Users are cautioned to check to determine that they have the latest edition of any IEEE Standard.

In publishing and making this document available, the IEEE is not suggesting or rendering professional or other services for, or on behalf of, any person or entity. Nor is the IEEE undertaking to perform any duty owed by any other person or entity to another. Any person utilizing this, and any other IEEE Standards document, should rely upon the advice of a competent professional in determining the exercise of reasonable care in any given circumstances.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they relate to specific applications. When the need for interpretations is brought to the attention of IEEE, the Institute will initiate action to prepare appropriate responses. Since IEEE Standards represent a consensus of concerned interests, it is important to ensure that any interpretation has also received the concurrence of a balance of interests. For this reason, IEEE and the members of its societies and Standards Coordinating Committees are not able to provide an instant response to interpretation requests except in those cases where the matter has previously received formal consideration. At lectures, symposia, seminars, or educational courses, an individual presenting information on IEEE standards shall make it clear that his or her views should be considered the personal views of that individual rather than the formal position, explanation, or interpretation of the IEEE.

Comments for revision of IEEE Standards are welcome from any interested party, regardless of membership affiliation with IEEE. Suggestions for changes in documents should be in the form of a proposed change of text, together with appropriate supporting comments. Comments on standards and requests for interpretations should be addressed to the IEEE Standards Board, 445 Hoes Lane, Piscataway, NJ 08854, USA.

Laws and regulations: Users of these documents should consult all applicable laws and regulations. Compliance with the provisions of this standard does not imply compliance to any applicable regulatory requirements. Implementers of the standard are responsible for observing or referring to the applicable regulatory requirements. IEEE does not, by the publication of its standards, intend to urge action that is not in compliance with applicable laws, and these documents may not be construed as doing so.

Copyrights: This document is copyrighted by the IEEE. It is made available for a wide variety of both public and private uses. These include both use, by reference, in laws and regulations, and use in private self-regulation, standardization, and the promotion of engineering practices and methods. By making this document available for use and adoption by public authorities and private users, the IEEE does not waive any rights in copyright to this document.

Updating of IEEE documents: Users of IEEE standards should be aware that these documents may be superseded at any time by the issuance of new editions or may be amended from time to time through the issuance of amendments, corrigenda, or errata. An official IEEE document at any point in time consists of the current edition of the document together with any amendments, corrigenda, or errata then in effect. In order to determine whether a given document is the current edition and whether it has been amended through the issuance of amendments, corrigenda, or errata, visit the IEEE Standards Association Web site at http://ieeexplore.ieee.org/xpl/standards.jsp, or contact the IEEE at the address listed previously.

For more information about the IEEE Standards Association or the IEEE standards development process, visit the IEEE-SA Web site at http://standards.ieee.org.

Errata: Errata, if any, for this and all other standards can be accessed at the following URL: http://standards.ieee.org/reading/ieee/updates/errata/index.html. Users are encouraged to check this URL for errata periodically.

Interpretations: Current interpretations can be accessed at the following URL: http://standards.ieee.org/reading/ieee/interp/index.html.

Patents: Attention is called to the possibility that implementation of this standard may require use of subject matter covered by patent rights. By publication of this standard, no position is taken with respect to the existence or validity of any patent rights in connection therewith. The IEEE is not responsible for identifying Essential Patent Claims for which a license may be required, for conducting inquiries into the legal validity or scope of Patents Claims or determining whether any licensing terms or conditions provided in connection with submission of a Letter of Assurance, if any, or in any licensing agreements are reasonable or non-discriminatory. Users of this standard are expressly advised that determination of the validity of any patent rights, and the risk of infringement of such rights, is entirely their own responsibility. Further information may be obtained from the IEEE Standards Association.

Participants: The list of IEEE participants can be accessed at the following URL: http://standards.ieee.org/downloads/23026/23026-2014_wg-participants.pdf

IMPORTANT NOTICE: This standard is not intended to ensure safety, security, health, or environmental protection. Implementers of the standard are responsible for determining appropriate safety, security, environmental, and health practices or regulatory requirements.

This IEEE document is made available for use subject to important notices and legal disclaimers. These notices and disclaimers appear in all publications containing this document and may be found under the heading “Important Notice” or “Important Notices and Disclaimers Concerning IEEE Documents.” They can also be obtained on request from IEEE or viewed at http://standards.ieee.org/IPR/disclaimers.html.
CONTENTS

1 Scope .. 10

2 Normative references .. 10

3 Terms and definitions ... 11
 3.1 cable management system ... 11
 3.2 plug and socket-outlet .. 11
 3.2.1 socket-outlet .. 12
 3.2.2 plug ... 12
 3.3 ship coupler .. 12
 3.3.1 ship connector ... 12
 3.3.2 ship inlet .. 12

4 General requirements .. 13
 4.1 System description .. 13
 4.2 Distribution system .. 14
 4.2.1 General .. 14
 4.2.2 Equipotential bonding ... 14
 4.3 Compatibility assessment before connection ... 15
 4.4 LVSC system design and operation ... 15
 4.4.1 System design ... 15
 4.4.2 System operation .. 15
 4.5 Personnel safety .. 16
 4.6 Design requirements .. 16
 4.6.1 General .. 16
 4.6.2 Protection against moisture and condensation .. 16
 4.6.3 Location and construction .. 16
 4.6.4 Electrical equipment in hazardous areas .. 17
 4.7 Electrical requirements ... 17
 4.8 System study and calculations ... 17
 4.9 Emergency shutdown including emergency-stop facilities .. 18

5 LV shore supply system requirements ... 19
 5.1 Voltages and frequencies ... 19
 5.2 Quality of LV shore supply .. 20

6 Shore-side installation .. 21
 6.1 General .. 21
 6.2 System component requirements .. 21
 6.2.1 Circuit-breaker and disconnector .. 21
 6.2.2 Transformer .. 22
 6.2.3 Neutral earthing resistor ... 22
 6.2.4 Equipment earthing conductor bonding ... 22
 6.3 Shore-to-ship electrical protection system .. 22
 6.4 LV interlocking ... 23
 6.4.1 General .. 23
 6.4.2 Operating of the low-voltage (LV) circuit-breakers and disconnectors 23
 6.5 Shore connection convertor equipment ... 24
 6.5.1 General .. 24
 6.5.2 Degree of protection ... 24
 6.5.3 Cooling .. 24
 6.5.4 Protection ... 24

7 Ship-to-shore connection and interface equipment ... 25
7.1 General ... 25
7.2 Cable management system .. 25
 7.2.1 General ... 25
 7.2.2 Monitoring of cable tension 26
 7.2.3 Monitoring of the cable length 27
7.3 Plugs and socket-outlets and ship couplers 27
 7.3.1 General ... 27
 7.3.2 Pilot contacts ... 29
7.4 Ship-to-shore connection cable 29
7.5 Independent control and monitoring cable 30
7.6 Storage .. 30
8 Ship requirements ... 30
 8.1 General ... 30
 8.2 Ship electrical distribution system protection 30
 8.2.1 Short-circuit protection 30
 8.2.2 Earth fault protection, monitoring and alarm 30
 8.3 Shore connection switchboard 30
 8.3.1 General ... 30
 8.3.2 Circuit-breaker and disconnector 31
 8.3.3 Instrumentation and protection 31
 8.4 On-board transformer ... 31
 8.5 On-board receiving switchboard connection point 32
 8.5.1 General ... 32
 8.5.2 Circuit-breaker ... 32
 8.5.3 Instrumentation ... 32
 8.5.4 Protection .. 33
 8.5.5 Operation of the circuit-breaker 34
 8.6 Ship power restoration .. 34
9 LVSC system control and monitoring 34
 9.1 General requirements .. 34
 9.2 Load transfer via blackout 35
 9.3 Load transfer via automatic synchronization 35
 9.3.1 General ... 35
 9.3.2 Protection requirements 35
10 Verification and testing .. 36
 10.1 General .. 36
 10.2 Initial tests of shore-side installation 36
 10.2.1 General ... 36
 10.2.2 Tests ... 36
 10.3 Initial tests of ship-side installation 36
 10.3.1 General ... 36
 10.3.2 Tests ... 37
 10.4 Tests at the first call at a shore supply point 37
 10.4.1 General ... 37
 10.4.2 Tests ... 37
11 Periodic tests and maintenance 38
 11.1 General .. 38
 11.2 Tests at repeated calls of a shore supply point 38
 11.2.1 General ... 38
Figure D.2 – Power plug and socket pin assignment ...46
Figure D.3 – IS Barrier and cable properties (To be developed) ..47
Figure D.4 – Safety loop circuit for LVSC system in tankers (To be developed)......................47
Figure E.1 – LVSC general operating procedures for connection a) and disconnection b).48
UTILITY CONNECTIONS IN PORT –
Part 3: Low Voltage Shore Connection (LVSC) Systems –
General requirements

FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC Publication(s)”)

2) The formal decisions of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees. In the ISO, Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75% of the member bodies casting a vote. The formal decisions of IEC on technical matters, once consensus within IEC Societies and Standards Coordinating Committees has been reached, is determined by a balanced ballot of materially interested parties who indicate interest in reviewing the proposed standard. Final approval of the IEC Standard document is given by the IEEE Standards Association (IEEE-SA) Standards Board.

3) IEC/ISO/IEEE Publications have the form of recommendations for international use and are accepted by IEC National Committees/ISO member bodies/IEEE Societies in that sense. While all reasonable efforts are made to ensure that the technical content of IEC/ISO/IEEE Publications is accurate, IEC, ISO or IEEE cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications (including IEC/ISO/IEEE Publications) transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC/ISO/IEEE Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC, ISO and IEEE do not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC, ISO and IEEE are not responsible for any services carried out by independent certification bodies.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC, ISO or IEEE or their directors, employees, servants or agents including individual experts and members of technical committees and IEC National Committees and ISO member bodies, or volunteers of IEE SECs and the Standards Coordinating Committees of the IEEE Standards Association (IEEE-SA) Standards Board, for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC/ISO/IEEE Publication or any other IEC, ISO or IEEE Publications.

8) Attention is drawn to the normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that implementation of this IEC/ISO/IEEE Publication may require use of material covered by patent rights. By publication of this standard, no position is taken with respect to the existence or validity of any patent rights in connection therewith. IEC, ISO or IEEE shall not be held responsible
for identifying Essential Patent Claims for which a license may be required, for conducting inquiries into the legal validity or scope of Patent Claims or determining whether any licensing terms or conditions provided in connection with submission of a Letter of Assurance, if any, or in any licensing agreements are reasonable or non-discriminatory. Users of this standard are expressly advised that determination of the validity of any patent rights, and the risk of infringement of such rights, is entirely their own responsibility. Further information may be obtained from ISO or the IEEE Standards Association.

International Standard IEC/IEEE 80005-3 has been prepared by IEC technical committee 18: Electrical installations of ships and of mobile and fixed offshore units, in cooperation with IEC subcommittee 23H: Plugs, socket-outlets and couplers for industrial and similar applications, and for electric vehicles, of IEC technical committee 23: Electrical accessories, ISO technical committee 8: Ships and marine technology, subcommittee 3: Piping and machinery, and IEEE IAS Petroleum and Chemical Industry Committee (PCIC) of the Industry Applications Society of the IEEE.

This publication is published as an IEC/IEEE prefix standard and IEC/ISO/IEEE triple logo standard.

A list of all the parts in the IEC 80005 series, published under the general title Utility Connections In Port, can be found on the IEC website.

The text of this standard is based on the following IEC documents:

<table>
<thead>
<tr>
<th>FDIS</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>18/XXXX/FDIS</td>
<td>18/XXXX/RVD</td>
</tr>
</tbody>
</table>

Full information on the voting for the approvals of this standard can be found in the report on voting indicated in the above table. In ISO, the standard has been approved by XX members out of YY having a cast vote.

International standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The IEC Technical Committee, the ISO Technical Committee and IEEE Technical Committee have decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC, ISO and IEEE web site in the data related to the specific publication. At this date, the publication will be

- reconfirmed
- withdrawn
- replaced by a revised edition, or
- amended.

The National Committees are requested to note that for this publication the stability date is 2017.

THIS TEXT IS INCLUDED FOR THE INFORMATION OF THE NATIONAL COMMITTEES AND WILL BE DELETED AT THE PUBLICATION STAGE.

1 A list of IEEE participants can be found at the following URL: (to be provided prior to publication).
IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.
INTRODUCTION

The following standard was developed jointly between IEC technical committee 18: Electrical installations of ships and of mobile and fixed offshore units, ISO technical committee 8: Ships and marine technology, subcommittee 3: Piping and Machinery, and IEEE IAS PCIC Marine Industry subcommittee.

For a variety of reasons, including environmental considerations, it is becoming an increasingly common requirement for ships to shut down ship generators and to connect to shore power for as long as practicable during stays in port.

The intention of this standard is to define requirements that support, with the application of suitable operating practices, efficiency and safety of connections by compliant ships to compliant low-voltage shore power supplies through a compatible shore-to-ship connection.

With the support of sufficient planning, cooperation between ship and terminal facilities, and appropriate operating procedures and assessment, compliance with the requirements of this standard is intended to allow different ships to connect to low-voltage shore connection (LVSC) systems at different berths. This provides the benefits of standard, straightforward connection without the need for adaptation and adjustment at different locations that can satisfy the requirement to connect for as long as practicable during stays in port.

Ships that do not apply this standard may find it impossible to connect to compliant shore supplies.

Where deviations from the requirements and recommendations in this standard may be considered for certain designs, the potential effects on compatibility are highlighted.

Where the requirements and recommendations of this standard are complied with, low-voltage shore supplies arrangements are likely to be compatible for visiting ships for connection.

Clauses 1 to 12 are intended for application to all LVSC systems. They intend to address mainly the safety and effectiveness of LVSC systems with a minimum level of requirements that would standardise on one solution. This standard includes the requirement to complete a detailed compatibility assessment for each combination of ship and shore supply prior to a given ship arriving to connect to a given shore supply for the first time.

The other annexes in this standard are ship specific annexes that include additional requirements related to agreed standardisation of solutions to achieve compatibility for compliant ships at different compliant berths and to address safety issues that are considered to be particular to that ship type. These annexes use the same numbering as Clauses 1 to 12 with an annex letter prefix. Hence, the numbering is not necessarily continuous. Where no additional requirements are identified, the clause is not shown.

137

138
1 Scope

This part of IEC/IEEE 80005 describes low voltage shore connection (LVSC) systems, on board the ship and on shore, to supply the ship with electrical power from shore.

This standard is applicable to the design, installation and testing of LVSC systems and addresses:

- LV shore distribution systems;
- shore-to-ship connection and interface equipment;
- transformers/reactors;
- semiconductor/rotating convertors;
- ship distribution systems; and
- protection, control, monitoring, interlocking and power management systems.

NOTE: It does not apply to the electrical power supply during docking periods, e.g. dry docking and other out-of-service maintenance and repair.

Additional and/or alternative requirements may be imposed by national administrations or the authorities within whose jurisdiction the ship is intended to operate and/or by the owners or authorities responsible for a shore supply or distribution system.

It is expected that LVSC systems will have practicable applications for ships requiring up to 1 MVA while at berth. Low-voltage shore connection systems exceeding 250 A, equal or exceeding 400 V a.c. and up to 1000 V a.c. nominal voltage are covered by this standard. High-voltage shore connection systems are covered by Part 1 of this standard.

This standard does not cover marinas and boatyards, or systems intended to be operated by ordinary persons as defined by IEC 61439.

2 Normative references

The following referenced documents are indispensable for the application of this document.

For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60034 (all parts), Rotating electrical machines

IEC 60076 (all parts), Power transformers

IEC 60079 (all parts), Electrical apparatus for explosive gas atmospheres

IEC 60092-201:1994, Electrical installations in ships – Part 201: System design – General
3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1 cable management system
all equipment designed to control, monitor and handle the flexible cables, for power and control, and their connection devices

3.2 plug and socket-outlet
a means enabling the connection of a flexible cable to fixed wiring. It consists of two parts:

NOTE For the use of plugs, socket-outlets, and ship couplers, see Figure 5 – Diagram showing the use of accessories.
3.2.1 socket-outlet

the part intended to be installed with the fixed wiring (shore side) or incorporated in equipment

NOTE A socket-outlet may also be incorporated in the output circuit of an isolating transformer.

3.2.2 plug

the part intended to be attached directly to one flexible cable, and to be connected to the shore socket-outlet

3.3 ship coupler

a means enabling the connection of a flexible cable to the ship. It consists of two parts:

3.3.1 ship connector

the part intended to be attached to one flexible cable connected to the supply, and to be connected to the ship inlet

3.3.2 ship inlet

the part incorporated in, or fixed to, the ship

3.4 equipotential bonding

provision of electric connections between conductive parts, intended to achieve equipotentiality

3.5 low voltage (abbreviation: LV)

a set of voltage levels used for the distribution of electricity and whose upper limit is generally accepted to be 1 000 V a.c.
3.6 **person in charge**
person responsible for LVSC system operation

3.7 **pilot contact**
a contact of the plug, ship inlet, socket-outlet and ship connector which signals correct connection and which is a safety-related component

3.8 **receiving point**
connection point of the flexible cable on the ship

3.9 **safe**
condition in which safety risks are minimized to an acceptable level

3.10 **supply point**
the connection point of the flexible cable on shore

3.11 **fail safe**
a design property of an item which prevents its failures from resulting in critical faults

3.12 **IT power system** an ungrounded power system

3.13 **safety relay**
is a fail safe relay as defined by the standards:

3.14 **physical connectors**
electrical connectors between shore and ship are defined as in Annexes

4 **General requirements**

4.1 **System description**

A typical LVSC system described in this standard consists of hardware components as shown in Figure 1.