

---

---

**Analytical colorimetry —**

**Part 4:**

**Metamerism index for pairs of  
samples for change of illuminant**

*Analyse colorimétrique —*

**iTEH Standards**

*Partie 4: Indice de métamérisme de paires d'échantillon pour  
changement d'illuminant*

**(<https://standards.iteh.ai>)**  
**Document Preview**

[ISO 18314-4:2020](#)

<https://standards.iteh.ai/catalog/standards/iso/e7ea99d1-667d-453e-83db-7a69d609dfc4/iso-18314-4-2020>



Reference number  
ISO 18314-4:2020(E)

**iTeh Standards**  
**(<https://standards.iteh.ai>)**  
**Document Preview**

[ISO 18314-4:2020](#)

<https://standards.iteh.ai/catalog/standards/iso/e7ea99d1-667d-453e-83db-7a69d609dfc4/iso-18314-4-2020>



**COPYRIGHT PROTECTED DOCUMENT**

© ISO 2020

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office  
CP 401 • Ch. de Blandonnet 8  
CH-1214 Vernier, Geneva  
Phone: +41 22 749 01 11  
Email: [copyright@iso.org](mailto:copyright@iso.org)  
Website: [www.iso.org](http://www.iso.org)

Published in Switzerland

## Contents

|                                                                       | Page      |
|-----------------------------------------------------------------------|-----------|
| <b>Foreword</b>                                                       | <b>iv</b> |
| <b>Introduction</b>                                                   | <b>v</b>  |
| <b>1 Scope</b>                                                        | <b>1</b>  |
| <b>2 Normative references</b>                                         | <b>1</b>  |
| <b>3 Terms and definitions</b>                                        | <b>1</b>  |
| <b>4 Symbols and abbreviated terms</b>                                | <b>2</b>  |
| <b>5 Reference illuminant</b>                                         | <b>3</b>  |
| <b>6 Test illuminant</b>                                              | <b>3</b>  |
| <b>7 CIELAB coordinates <math>L^*, a^*, b^*</math></b>                | <b>3</b>  |
| <b>8 Metamerism index for change in illuminant</b>                    | <b>4</b>  |
| 8.1 General calculation methods                                       | 4         |
| 8.2 Basic calculation of the metamerism index from colour differences | 4         |
| 8.3 Correction methods                                                | 5         |
| 8.3.1 Additive correction                                             | 5         |
| 8.3.2 Multiplicative correction                                       | 5         |
| 8.3.3 Spectral correction                                             | 6         |
| 8.4 Test report                                                       | 9         |
| <b>Annex A (informative) Calculation examples</b>                     | <b>10</b> |
| <b>Bibliography</b>                                                   | <b>23</b> |

## Tech Standards Document Preview

[ISO 18314-4:2020](#)

<https://standards.iteh.ai/catalog/standards/iso/e7ea99d1-667d-453e-83db-7a69d609dfc4/iso-18314-4-2020>

## Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see [www.iso.org/directives](http://www.iso.org/directives)).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see [www.iso.org/patents](http://www.iso.org/patents)).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see [www.iso.org/iso/foreword.html](http://www.iso.org/iso/foreword.html).

This document was prepared by Technical Committee ISO/TC 256, *Pigments, dyestuff and extenders*.

A list of all parts in the ISO 18314 series can be found on the ISO website.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at [www.iso.org/members.html](http://www.iso.org/members.html).

## Introduction

For the phenomenon of metamerism of pairs of samples, three different kinds are distinguished:

- a) Illuminant metamerism occurs if both of the object colours of a pair of samples are perceived as being the same only under a specific illuminant (e.g. under illuminant D65), while they differ under a different illuminant (e.g. illuminant A).
- b) Observer metamerism occurs if the object colours of a pair of samples are perceived as being the same by one observer, while a different observer perceives a colour difference under the same illuminant and the same reference conditions.

NOTE 1 The observer metamerism is caused by differences between the distributions of spectral colour matching functions of different observers.

- c) Field-size metamerism occurs if both of the object colours of a pair of samples are perceived as being the same on the retina for a size of an observation field (e.g. defined by the 2° standard observer), while they differ for a different observation field on the retina (e.g. 10°).

NOTE 2 The reason for field-size metamerism is based on the existent colour matching functions of an observer during an observation situation. The colour matching functions change with the size of the observation field on the retina. Such change of the observation field can also occur if, for example, the pair of samples is examined from different distances.

## iTeh Standards (<https://standards.iteh.ai>) Document Preview

[ISO 18314-4:2020](#)

<https://standards.iteh.ai/catalog/standards/iso/e7ea99d1-667d-453e-83db-7a69d609dfc4/iso-18314-4-2020>



# Analytical colorimetry —

## Part 4: Metamerism index for pairs of samples for change of illuminant

### 1 Scope

This document specifies a formalism for the calculation of the illuminant metamerism of solid surface colours. It cannot be applied to colours of effect coatings without metrical adaptation.

This document only covers the phenomenon of metamerism for change of illuminant, which has the greatest meaning in practical application. In the case of chromaticity coordinates of a pair of samples under reference conditions that do not exactly match, recommendations are given on which correction measures are to be taken. Regarding the reproduction of colours, the metamerism index is used as a measure of quality in order to specify tolerances for colour differences between a colour sample and a colour match under different illumination conditions.

The quantification of the illuminant metamerism of pairs of samples is formally performed by a colour difference assessment, for which tolerances that are common for the evaluation of residual colour differences can be used.

**NOTE** In the colorimetric literature and textbooks, the term geometric metamerism is sometimes used for the case that two colours appear to be the same under a specific geometry for visual assessment and selected standard observer and standard illuminant pair, but is perceived as two different colours at changed observation geometry. The term geometric metamerism is different to metamerism described in this document.

<https://standards.iteh.ai> ISO 18314-4:2020

### 2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO/CIE 11664-1, *Colorimetry — Part 1: CIE standard colorimetric observers*

ISO/CIE 11664-2:—<sup>1)</sup>, *Colorimetry — Part 2: CIE standard illuminants*

ISO/CIE 11664-4, *Colorimetry — Part 4: CIE 1976 L\*a\*b\* colour space*

CIE 015, *Colorimetry*

CIE S 017, *International Lighting Vocabulary*

### 3 Terms and definitions

For the purposes of this document, the terms and definitions given in CIE S 017 and the following apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at <https://www.iso.org/obp>
- IEC Electropedia: available at <http://www.electropedia.org/>

<sup>1)</sup> Under preparation. Stage at the time of preparation: ISO/CIE DIS 11664-2:2020.

### 3.1

#### **metamerism**

property of spectrally different colour stimuli that have the same tristimulus values in a specified colorimetric system

[SOURCE: CIE 017:2016, 17-23-006]

### 3.2

#### **paramerism**

characteristic of a pair of samples with spectral colour stimulus functions which have different fundamental colour stimulus functions as well as different residuals or metameristic black values within the visible spectral range

Note 1 to entry: Parameric objects are characterized by the fact that they reflect colour stimuli of different spectral power distribution functions under a specified standard illuminant, which cause approximately the same colour perception under the selected observation conditions.

### 3.3

#### **colour difference**

$\Delta E^*$

difference between two colour stimuli, defined as a distance between the points representing them in a specified colour space

[SOURCE: CIE 017:2016, 17-22-041, modified — symbol  $\Delta E^*$  was amended, “Euclidean” and Note 1 to entry have been deleted.]

## iTeh Standards

(<https://standards.iteh.ai>)

### 3.4

#### **reference illuminant**

illuminant with which other illuminants are compared

[SOURCE: CIE S 017:2016, 17-22-109 17]

## Document Preview

### 3.5

#### **test illuminant**

illuminant, for which the *colour difference* (3.3) between the two samples to be tested is assessed

### 3.6

#### **metamerism-index for change in illuminant**

$M_t$

colour difference  $\Delta E^*$  (3.3) between the two samples under *test illuminant* (3.5) if  $\Delta E^* = 0$  is observed under the *reference illuminant* (3.4)

### 3.7

#### **correction method**

algorithm for theoretically eliminating a *colour difference* (3.3) of the pair of samples under the *reference illuminant* (3.4)

## 4 Symbols and abbreviated terms

For the application of this document, the symbols given in [Table 1](#) apply.

**Table 1 — Symbols**

| Symbol                      | Identification                                          |
|-----------------------------|---------------------------------------------------------|
| $X, Y, Z$                   | Standard tristimulus values of a measured object colour |
| $X_n, Y_n, Z_n$             | Standard tristimulus values of the used illuminant      |
| $\bar{x}, \bar{y}, \bar{z}$ | Colour-matching functions                               |

**Table 1 (continued)**

| Symbol                               | Identification                                                                                                         |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| $L^*, a^*, b^*$                      | Basic coordinates of the CIELAB system                                                                                 |
| $\Delta L^*, \Delta a^*, \Delta b^*$ | Differences between basic coordinates of the CIELAB system                                                             |
| $M_t$                                | Metamerism index for change in illuminant                                                                              |
| $\vec{N}, \vec{N}_f, \vec{N}_r$      | Vector of the radiometric function of a sample with associated fundamental colour stimulus (f) and metameric black (r) |
| $\lambda$                            | Wavelength                                                                                                             |
| $S$                                  | Relative spectral distribution function of an illuminant                                                               |
| $\vec{W}$                            | Vector of the standard tristimulus values                                                                              |
| $w$                                  | Integration weights for the calculation of the standard tristimulus values                                             |
| $A$                                  | Matrix of the integration weights $w$ for the calculation of the standard tristimulus values                           |
| $R$                                  | Projection matrix                                                                                                      |
| $I$                                  | Identity matrix                                                                                                        |
| Index spl                            | Sample                                                                                                                 |
| Index std                            | Standard                                                                                                               |
| Index t                              | Test illuminant                                                                                                        |
| Index corr                           | Corrected value                                                                                                        |
| Index f                              | Fundamental colour stimulus                                                                                            |
| Index r                              | Metameric black values (residuals)                                                                                     |
| Index ref                            | Reference illuminant                                                                                                   |
| Index $T$                            | Transposed matrix                                                                                                      |

## Document Preview

### 5 Reference illuminant

The standard illuminant D65 is chosen as reference illuminant in accordance with ISO/CIE 11664-2. Other reference illuminants required in special cases shall be particularly specified.

### 6 Test illuminant

The selection of the test illuminant depends on the application. If the test illuminants are not particularly specified, standard illuminant A in accordance with ISO 11664-2 and/or illuminants of the fluorescent lamp type, such as FL11 in accordance with CIE 015, shall preferably be selected. The test illuminant used shall be indicated as an index to  $M$ , e.g.  $M_A$  or  $M_{FL11}$ .

When calculating the standard tristimulus values  $X, Y, Z$  under the selected test illuminants, the basic raster of wavelengths given in ISO 11664-2 or CIE 015 for A and D65, and in CIE 015 for FL11 and FL2 shall be complied with. In cases of missing measuring values of the standard or sample for these wavelengths, these values shall be interpolated and/or extrapolated.

### 7 CIELAB coordinates $L^*, a^*, b^*$

The metamerism index  $M_t$  is based on the CIELAB coordinates  $L^*, a^*, b^*$  of samples 1 and 2 which are to be compared.  $L^*, a^*, b^*$  is calculated in accordance with ISO/CIE 11664-4 from the standard tristimulus values  $X, Y, Z$  of the sample for the CIE 1964 10° standard observer in accordance with ISO/CIE 11664-1 for the reference illuminant and the selected test illuminant. If calculating  $L^*, a^*, b^*$  under the test illuminant, the respective standard tristimulus values  $X_n, Y_n, Z_n$  of the entirely matt white surface shall be used (see CIE 015). For the standard illuminants A and D65 or for the illuminant

recommendation FL11, the standard tristimulus values  $X_n$ ,  $Y_n$ ,  $Z_n$  of the entirely matt white surface apply in accordance with [Table 2](#).

[Table 2](#) specifies standard tristimulus values for the frequently used standard illuminants D65 and A as well as illuminant FL11 and both of the standard observers in accordance with CIE 015.

**Table 2 — Standard tristimulus values**

| Standard tristimulus values | 2° standard observer |        |        | 10° standard observer |        |        |
|-----------------------------|----------------------|--------|--------|-----------------------|--------|--------|
|                             | Illuminant           |        |        |                       |        |        |
|                             | D65                  | A      | FL11   | D65                   | A      | FL11   |
| $X_n$                       | 95,04                | 109,85 | 100,96 | 94,81                 | 111,14 | 103,86 |
| $Y_n$                       | 100,00               | 100,00 | 100,00 | 100,00                | 100,00 | 100,00 |
| $Z_n$                       | 108,88               | 35,58  | 64,35  | 107,32                | 35,20  | 65,61  |

For fluorescent samples, the illuminant used for measurement shall be adjusted as close as possible to that illuminant for which the standard tristimulus values are to be determined.

NOTE In contrast to non-fluorescent samples, the calculation of metamerism indices for fluorescent samples is erroneous if the samples are measured only under one illuminant.

## 8 Metamerism index for change in illuminant

### 8.1 General calculation methods

Three different correction methods for calculating a metamerism index in the case of paramerism have been proposed in References [6] to [13]. All methods assume that, for practical cases, there might be already a small difference between the colours of the sample and the standard even under the reference illuminant from the very beginning, due to problems of fabrication. In the case of two methods, called the additive and the multiplicative correction, these inherent colour differences often merge with the difference introduced by the change of the illuminant. The third method, the spectral correction, works more fundamentally by the separation of inherent colour differences under the reference illuminant from those introduced by the change of the illuminant.

NOTE [Annex A](#) includes calculation examples.

### 8.2 Basic calculation of the metamerism index from colour differences

The common formula for a metamerism index at change in illuminant, expressed in CIELAB coordinates for the test illuminant (t), is given by [Formula \(1\)](#):

$$M_t = \sqrt{(\Delta L_t^*)^2 + (\Delta a_t^*)^2 + (\Delta b_t^*)^2} \quad (1)$$

where

t is the test colour;

$$\Delta L_t^* = L_{\text{spl,corr,t}}^* - L_{\text{std,t}}^*;$$

$$\Delta a_t^* = a_{\text{spl,corr,t}}^* - a_{\text{std,t}}^*;$$

$$\Delta b_t^* = b_{\text{spl,corr,t}}^* - b_{\text{std,t}}^*.$$

The formulae given above are meant as an example if using the CIELAB colour space.

Analogous equations apply for other Euclidian colour spaces such as DIN 99o in DIN 6176. In non-Euclidian colour spaces such as CIE 94 or CIEDE2000, the specific colour differences are provided with colour-space dependent weight functions and, in regard to the latter case, are expanded by an additional rotation term. The CIELAB metric used in the present standard is an example and should be replaced in practical applications by one of the mentioned more recent metrics (e.g. CIE 94, CIEDE2000, DIN 99o), which are significantly more uniform than the CIELAB model.

## 8.3 Correction methods

### 8.3.1 Additive correction

When using the additive correction, the differences of any colorimetric axis between standard (std) and sample (spl) under reference conditions (ref), are added to the specific differences between standard and sample under test conditions (t). The resulting equation for the metamerism index  $M_t$ , expressed in CIELAB coordinates, is then given by [Formula \(2\)](#):

$$M_t = \sqrt{(\Delta L_{\text{corr}}^*)^2 + (\Delta a_{\text{corr}}^*)^2 + (\Delta b_{\text{corr}}^*)^2} \quad (2)$$

where

$$\Delta L_{\text{corr}}^* = L_{\text{spl},t}^* - L_{\text{std},t}^* - \Delta L_{\text{ref}}^*$$

$$\Delta L_{\text{ref}}^* = L_{\text{spl},\text{ref}}^* - L_{\text{std},\text{ref}}^*$$

Analogous relationships apply for  $\Delta a^*$  and  $\Delta b^*$ . It should be noted that slightly different results are to be expected, if the correction is applied to standard tristimulus values prior to transformation into a uniform colour space such as CIELAB or DIN 99o.

[ISO 18314-4:2020](#)

### 8.3.2 Multiplicative correction

<https://standards.iteh.ai/catalog/standards/iso/e7ea99d1-667d-453e-83db-7a69d609dfc4/iso-18314-4-2020>

When using the multiplicative correction, which is specified in CIE 015 as correction method, the standard tristimulus values of the sample (spl), which are observed under test conditions (t) are multiplied with the quotient of the standard tristimulus values of standard (std) and sample (spl), which are obtained under reference conditions (ref). The resulting equation is given in [Formula \(3\)](#):

$$Y_{\text{corr}} = Y_{\text{spl},t} \frac{Y_{\text{std},\text{ref}}}{Y_{\text{spl},\text{ref}}} \quad (3)$$

in which case, again, analogous combinations for  $X_{\text{corr}}$  and  $Z_{\text{corr}}$  apply. Subsequently, a transformation into a uniform colour space (e.g. CIELAB) takes place and results in [Formula \(4\)](#):

$$M_t = \sqrt{(\Delta L_{\text{corr}}^*)^2 + (\Delta a_{\text{corr}}^*)^2 + (\Delta b_{\text{corr}}^*)^2} \quad (4)$$

with

$$\Delta L_{\text{corr}}^* = L_{\text{spl},\text{corr},t}^* - L_{\text{std},t}^*$$

Analogous relationships apply for the two remaining specific differences  $\Delta a_{\text{corr}}^*$  and  $\Delta b_{\text{corr}}^*$ .