SLOVENSKI STANDARD SIST EN 15984:2022 01-april-2022 Nadomešča: SIST EN 15984:2017 Naftna industrija in proizvodi - Določevanje sestave rafinerijskega plina za ogrevanje in izračunavanje vsebnosti ogljika in kalorične vrednosti - Plinska kromatografska metoda Petroleum industry and products - Determination of composition of refinery heating gas and calculation of carbon content c Mineralölindustrie und -produkte - Bestimmung der Zusammensetzung von Heizgas für Raffinerien und Berechnung des Kohlenstoffgehaltes und des Heizwertes - Gaschromatographisches Verfahren dards iteh ai Industries et produits pétroliers - Détermination de la composition des gaz combustibles de raffinerie, de leur pouvoir calorifique et de leur teneur en carbone déthode par chromatographie en phase gazeuse 9697df0e2ccb/sist-en-15984-2022 Ta slovenski standard je istoveten z: EN 15984:2022 ICS: 71.040.50 Fizikalnokemijske analitske Physicochemical methods of metode analysis 75.160.30 Plinska goriva Gaseous fuels SIST EN 15984:2022 en,fr,de **SIST EN 15984:2022** # iTeh STANDARD **PREVIEW** (standards.iteh.ai) SIST EN 15984:2022 https://standards.iteh.ai/catalog/standards/sist/7d70619ccf91-43fd-91b9-9b97df0e2ccb/sist-en-15984-2022 # EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM EN 15984 February 2022 ICS 75.160.30 Supersedes EN 15984:2017 #### **English Version** # Petroleum industry and products - Determination of composition of refinery heating gas and calculation of carbon content and calorific value - Gas chromatography method Industries et produits pétroliers - Détermination de la composition des gaz combustibles de raffinerie, de leur pouvoir calorifique et de leur teneur en carbone -Méthode par chromatographie en phase gazeuse Mineralölindustrie und -produkte - Bestimmung der Zusammensetzung von Heizgas für Raffinerien und Berechnung des Kohlenstoffgehaltes und des Heizwertes - Gaschromatographisches Verfahren This European Standard was approved by CEN on 24 December 2021. CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN member. This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions. CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Kaly, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovakia, Sweden, Switzerland, Turkey and United Kingdom. EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels | Contents Page | | | | |--|--|--------|--| | Europ | ean foreword | 3 | | | 1 | Scope | 4 | | | 2 | Normative references | 4 | | | 3 | Terms and definitions | 4 | | | 4 | Principle | 4 | | | 5 | Reagents and materials | 6 | | | 5.1
5.2 | GasesCalibration sample | | | | 6 | Apparatus | | | | 7 | Gas chromatographic analysis | | | | 7.1 | Analysis systems | | | | 7.2 | System configuration Tell STANDARD Columns | 7 | | | 7.3 | | | | | 8 | Calibration PREVIEW General | 7 | | | 8.1 | General | 7 | | | 8.2
8.3 | Absolute response factors (Standards item ai) Relative response factors | 8
8 | | | 9 | | | | | 9.1 | Calculation SIST EN 15984:2022 Calculation of the non-normalized mole fractions tandards/sist/7d70619c- Validation of normalized composition (reference components)4-2022 | 9 | | | 9.2 | Calculation of the non-normalized mole fractions tandards/sist/7d70619c- | 9 | | | 9.3 | Validation of normalized composition (reference components) | 9 | | | 9.4
9.5 | Calculation of carbon contentCalculation of lower calorific value, on mass basis | 10 | | | 9.5 | Expression of results | | | | | • | | | | 11
11.1 | PrecisionGeneral | | | | 11.2 | Repeatability | | | | 11.3 | Reproducibility | | | | 12 | Test report | 12 | | | Annex A (normative) Column combination | | 13 | | | Annex B (normative) Detector linearity check | | 18 | | | Annex C (informative) Calculation test data | | | | | Annex | Annex D (normative) Data for calculation | | | | Annex | Annex E (informative) Precision estimates for the refinery gas composition | | | | Biblio | graphy | 23 | | #### **European foreword** This document (EN 15984:2022) has been prepared by Technical Committee CEN/TC 19 "Gaseous and liquid fuels, lubricants and related products of petroleum, synthetic and biological origin", the secretariat of which is held by NEN. This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by August 2022, and conflicting national standards shall be withdrawn at the latest by August 2022. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN shall not be held responsible for identifying any or all such patent rights. This document supersedes EN 15984:2017. This revision contains a new informative Annex with estimated precision data for selected components in refinery gas. This document is based on a DIN Standard [5] with the same scope. Any feedback and questions on this document should be directed to the users' national standards body. A complete listing of these bodies can be found on the CEN website. According to the CEN-CENELEC Internal Regulations, the national standards organisations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom. SIST EN 15984:2022 https://standards.iteh.ai/catalog/standards/sist/7d70619c-cf91-43fd-91b9-9b97df0e2ccb/sist-en-15984-2022 #### Scope 1 This document defines a gas chromatographic analysis for the determination of the composition of fuel gases, as used in refinery heating gas. These results are used to calculate the carbon content and the lower calorific value. With this gas chromatographic analysis, an overall of 23 refinery heating gas components are determined in concentrations as typically found in refineries (see Table 1 for further details). Water is not analysed. The results represent dry gases. - Depending on the equipment used, there is a possibility to determine higher hydrocarbons as well. NOTE 1 - NOTE 2 For the purposes of this document, the terms "(V/V)" is used to represent the volume fraction (φ) . IMPORTANT — This document does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this document to establish appropriate safety and health practices and determine the applicability of regulatory limitations. #### Normative references 2 There are no normative references in this document. # iTeh STANDARD #### Terms and definitions 3 No terms and definitions are listed in this document. ISO and IEC maintain terminological databases for use in standardization at the following addresses: - IEC Electropedia: available at https://www.electropedia.org/ - ISO Online browsing platform: available at https://www.iso.org/obp.https://standards.ifeh.ai/catalog/standards/sist/7d70619ccf91-43fd-91b9-9b97df0e2ccb/sist-en-15984-2022 #### **Principle** 4 This document defines a procedure that is used to determine all components that are present in a typical refinery heating gas, as indicated in Table 1. The composition range in which each component can be analyzed does depend on the actual sample composition as higher amounts of a certain component can affect the detection range of other components eluting close by. The general ranges which apply to all the individual components are: - hydrocarbons from 0,01 (mol/100 mol) up to 100 (mol/100 mol); - non-condensable gases from 0,02 (mol/100 mol) up to 100 (mol/100 mol); - for hydrogen sulfide a range between 0,1 (mol/100 mol) up to 10 (mol/100 mol) has been found applicable. Three different analysis systems are necessary; they may be built in three separate gas chromatographs, or be integrated into one. Depending on the configuration, hydrocarbons with more than five carbon atoms are reported as a sum parameter. The composition of the refinery heating gas is used to calculate the carbon content and the calorific value. A typical procedure is described hereafter. A configuration is acceptable when the determination results in the precision as described in Clause 11. ${\bf Table~1-Refinery~heating~gas~components}$ | Number | Description | Chemical formula | |--------|--|---| | 1 | Hydrogen | H ₂ | | 2 | Oxygen/Argon | O ₂ /Ar | | 3 | Nitrogen | N ₂ | | 4 | Carbon monoxide | CO | | 5 | Carbon dioxide | CO ₂ | | 6 | Hydrogen sulfide | H ₂ S | | 7 | Methane | CH ₄ | | 8 | Ethane | C ₂ H ₆ | | 9 | Ethene | C ₂ H ₄ | | 10 | Ethyne (Acetylene) | C_2H_2 | | 11 | Propane | C ₃ H ₈ | | 12 | Propene en STANL | €3H6KD | | 13 | Propyne (Methylacetylene) | C ₃ H ₄ | | 14 | Propadiene dards i | C ₃ H ₄ | | 15 | iso-Butane | C_4H_{10} | | 16 | <i>n</i> -Butane <u>SIST EN 15984:2</u> | C ₄ H ₁₀ | | 17 ntt | ps://standards.iteh.ai/catalog/stai
c <i>trqns-2</i> -Butene-9b97df0e2ccb/s | idards/sist/7d70619c-
is448-15984-2022 | | 18 | 1-Butene | C ₄ H ₈ | | 19 | 2-Methyl-Propene | C ₄ H ₈ | | 20 | cis-2-Butene | C ₄ H ₈ | | 21 | 1,3-Butadiene | C ₄ H ₆ | | 22 | iso-Pentane | C ₅ H ₁₂ | | 23 | n-Pentane | C ₅ H ₁₂ | | 24 | Other components with 5 or more Carbon atoms, excluding iso- and n -Pentane (C_{5+}) | | #### 5 Reagents and materials - 5.1 Gases. - **5.1.1 Hydrogen**, with a minimum purity of 99,995 % (V/V). - **5.1.2 Helium**, with a minimum purity of 99,995 % (V/V). - **5.1.3 Nitrogen**, with a minimum purity of 99,995 % (V/V). - **5.1.4 Air**, free of oil and water. - **5.1.5 Argon**, as alternative for analysis system 2, with a minimum purity of 99,995 % (V/V). #### 5.2 Calibration sample. A certified reference gas mixture in concentrations that allow the determination of the necessary response factors (see 8.1) and retention times is required. #### 6 Apparatus ## 6.1 Usual laboratory apparatus and glassware. A NDARD **6.2 Gas chromatographic apparatus,** consisting of at least three separation systems able to work simultaneously in one gas chromatograph, with a Thermal Conductivity Detector (TCD) and Flame Ionization Detector (FID) that should be available, and confirming to the requirements as given in Clause 7. ## 7 Gas chromatographic analysis SIST EN 15984:2022 ittps://standards.iteh.ai/catalog/standards/sist/7d70619ccf91-43fd-91b9-9b97df0e2ccb/sist-en-15984-2022 #### 7.1 Analysis systems The gas chromatographic system, as recommended in Annex A, consist of the following three parts: #### 1) Analysis system 1 All components except hydrogen (see Table 1) are retained on a porous polymer and a molecular sieve column and back flushed. NOTE HayeSep[©] and Molsieve[©] are examples of such commercially available columns¹. Hydrogen is determined on a TCD with nitrogen (5.1.3) as the carrier gas (see Figure A.4). #### 2) Analysis system 2 The second analysis system separates non-condensable gases, carbon dioxide, and hydrocarbons with two carbon atoms and hydrogen sulfide with helium (5.1.2) as the carrier gas and a TCD as a 6 $^{^1}$ HayeSep $^{\odot}$ and Molsieve $^{\odot}$ are examples of suitable products available commercially. This information is given for the convenience of users of this document and does not constitute an endorsement by CEN of these products. detector. After a pre-separation on a porous polymer column (column 3) propane and higher hydrocarbons are back flushed and vented. See Figure A.5 for details. When the inert gases (O_2/Ar , N_2 , CH_4 and CO) are on the molecular sieve 13X column, this column is isolated. Carbon dioxide, the C_2 -hydrocarbons and hydrogen sulfide are eluted from the porous polymer column (column 4) and are detected. The C_2 -hydrocarbons from this fraction are not used for quantification. After this the molecular sieve 13X column (column 6) is eluted and the components are determined on the TCD. Methane is quantified on Analysis System 3. #### 3) Analysis system 3 The third analysis system separates and quantifies all hydrocarbons by an FID and hydrogen (5.1.1) or helium (5.1.2) as the carrier gas. Two columns are used in series. From the methyl silicone column (column 1), the components above a certain cut point e.g. n-pentane are back flushed and determined as a summed peak. The hydrocarbons from the alumina oxide column, column 2, are then separated and quantified. See Figure A.6 for details. #### 7.2 System configuration The gas chromatographic system may consist of one or more gas chromatographs, with the possibility for isothermal or temperature programmed runs or both depending on the selected system configuration. A TCD and an FID shall be available. h STANDARI A gas flow control system and gas sampling valves and switching valves are used. Means for quantification shall be provided. Optionally a vaporizer may be used. ndards.iteh.ai) #### 7.3 Columns #### SIST EN 15984:2022 A combination of packed and capillary columns is possible. cf91-43fd-91b9-9b97df0e2ccb/sist-en-15984-2022 It shall be ascertained that a quantitative separation of all the components that need to be determined (see Table 1) is possible and that the summed total of C_{5+} is quantitative. Adequate separation is required between the components on all three separation systems. If cyclopropane can be determined, it shall be summed to propene. An example for a typical configuration is given in Annex A. #### 8 Calibration #### 8.1 General Depending on the production procedure of the reference gas mixture, it can be necessary to convert the concentration units of the components in the calibration gas to (mol/mol) %. Linearity of the detectors shall be checked according to Annex B. If calibration is necessary, e.g. daily or for an analysis series, a reference gas mixture shall be analysed. For each analysis system (see 7.1) at least one component, the reference component, needs to be calibrated. For example, for analysis system 1 hydrogen, for analysis system 2 nitrogen and for analysis system 3 propane. With these three components, an external calibration is done. The absolute response factor is calculated. For all the other components, relative response factors shall be used (see 8.3). The relative response factor of the reference component is set at 1,0. As alternative all absolute response factors can be determined for all the components that need to be analysed in a reference gas mixture. A check of this calibration can take place with a gas mixture with fewer components. #### 8.2 Absolute response factors The determination of absolute response factors is possible when a repeatable injection is possible under constant analysis conditions. The ratio between concentration and peak area is determined and the absolute response factor is calculated as follows: $$RF_i = \frac{X_i}{A_i} \tag{1}$$ where RF_i is the absolute response factor of component i; x_i is the concentration of component i in (mol/100 mol) in the calibration gas; A_i is the peak area of component i in the calibration gas. #### 8.3 Relative response factors ## **PREVIEW** For quantification relative response factors can be used too. In one analysis system, one component is used as a reference (reference component). The relative response factor is calculated as follows: $$RRF_{i} = \frac{RF_{i}}{RF_{St}}$$ https://standards.iteh.ai/catalog/standards/sist/7d70619c- cf91-43fd-91b9-9b97df0e2ccb/sist-en-15984-2022 (2) where RRF_i is the relative response factor of component i; RF_i is the absolute response factor of component i; RF_{St} is the absolute response factor of the reference component St. #### 9 Calculation #### 9.1 General For the calculation of parameters of gas mixtures, as described in this standard, the molar composition of the gas mixture is necessary. A more accurate result may be obtained by analysing the C5 olefins separately and not adding them to the sum of all heavier components. #### 9.2 Calculation of the non-normalized mole fractions The concentrations of the components, $x_{i, sample}$, mentioned in Table 1 are calculated as mole fractions. The calculation of these follows Formula (3): $$x_{i,sample} = A_{i,sample} \times RRF_{i,St} \times RF_{StK}$$ (3) where $A_{i,sample}$ is the area of component i in the sample; $RRF_{i,St}$ is the relative response factor of component i relative to the reference component TAL OTANI RF_{StK} is the absolute response factor of the reference component St in the reference gas mixture K. NOTE If only absolute response factors are used, then reference component St and component i are identical. Therefore, in Formula (3) RRF = 1 and each RF represents the individual component i. #### 9.3 Validation of normalized composition (reference components) https://standards.iteh.ai/catalog/standards/sist/7d70619c- The results may be normalized when the sum of all the mole fractions of the components are not smaller than 0,98 or greater than 1,02. If not, the analysis should be repeated. If the duplicate analysis does not improve this result, the calibration and the apparatus shall be checked. Normalization is done according to: $$x_{i}^{*} = \frac{x_{i,sample}}{\sum_{i=1}^{k} x_{i,sample}} *100$$ $$(4)$$ where is the corrected concentration of component i in the sample in mol/100 mol; $x_{i,sample}$ is the uncorrected concentration of component i in the sample; $\sum_{i=1}^{k} x_{i,sample}$ is the sum of the non-normalized mol fractions of the sample; *k* is the number of components.