

SLOVENSKI STANDARD kSIST-TP FprCEN/CLC/TR 17603-31-03:2021 01-maj-2021

Vesoljska tehnika - Priročnik za toplotno zasnovo - 3. del: Površinska temperatura vesoljskih plovil

Space Engineering - Thermal design handbook - Part 3: Spacecraft Surface Temperature

Raumfahrttechnik - Handbuch für thermisches Design - Teil 3: Oberflächentemperatur von Raumfahrzeugen

iTeh STANDARD PREVIEW

Ingénierie spatiale - Manuel de conception thermique - Partie 3: Température de surface des véhicules spatiaux

kSIST-TP FprCEN/CLC/TR 17603-31-03:2021

Ta slovenski standard je istoveten z log/star pre EN/CLC/TR-17603-31-03

ICS:

49.140 Vesoljski sistemi in operacije Space systems and operations

kSIST-TP FprCEN/CLC/TR 17603-31- en,fr,de 03:2021

kSIST-TP FprCEN/CLC/TR 17603-31-03:2021

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>kSIST-TP FprCEN/CLC/TR 17603-31-03:2021</u> https://standards.iteh.ai/catalog/standards/sist/77f1195e-e5ea-49f9-a3c3-985470178dfc/ksist-tp-fprcen-clc-tr-17603-31-03-2021

TECHNICAL REPORT RAPPORT TECHNIQUE TECHNISCHER BERICHT

FINAL DRAFT FprCEN/CLC/TR 17603-31-03

February 2021

ICS 49.140

English version

Space Engineering - Thermal design handbook - Part 3: **Spacecraft Surface Temperature**

Ingénierie spatiale - Manuel de conception thermique -Partie 3: Température de surface des véhicules spatiaux

Raumfahrttechnik - Handbuch für thermisches Design -Teil 3: Oberflächentemperatur von Raumfahrzeugen

This draft Technical Report is submitted to CEN members for Vote. It has been drawn up by the Technical Committee CEN/CLC/JTC 5.

CEN and CENELEC members are the national standards bodies and national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.

Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation. /ksist-tp-fprcen-clc-tr-17603-31-03-2021

Warning: This document is not a Technical Report. It is distributed for review and comments. It is subject to change without notice and shall not be referred to as a Technical Report.

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

Table of contents

Europ	ean Fore	eword	10
1 Scop	e		11
2 Refe	rences .		12
3 Term	ıs, defin	itions and symbols	13
3.1	Terms a	and definitions	13
3.2	Symbols	S	13
4 Sola	r radiati	on	15
4.1	General		15
4.2	Infinitely	conductive planar surfaces	19
	4.2.1	Flat plate emitting on one or both sides	19
4.3	Infinitely	Flat plate emitting on one or both sides	21
	4.3.1	Sphere kSIST-TP FprCEN/CLC/TR 17603-31-03:2021	21
4.4	Infinitely	https://standards.iteh.ai/catalog/standards/sist/77f1195e-e5ea-49f9-a3c3- / conductive cylindrical surfaces / conductive cylindrical surfaces	22
	4.4.1	Two-dimensional circular cylinder	
	4.4.2	Three-dimensional circular cylinder	23
4.5	Infinitely	conductive conical surfaces	25
	4.5.1	Semi-infinite circular cone	25
	4.5.2	Finite circular cone with insulated base. (axial configuration)	27
	4.5.3	Finite height circular cone	29
4.6	Infinitely	conductive cylindrical-conical surfaces	31
	4.6.1	Cone-cylinder-cone	31
4.7	Infinitely	conductive prismatic surfaces	49
	4.7.1	Prism with an n-sided regular polygonal section	49
4.8	Infinitely	conductive pyramidal surfaces	60
	4.8.1	Pyramid with an n-sided regular polygonal section	60
4.9	Infinitely	conductive prismatic-pyramidal surfaces	
		Pyramid-prism-pyramid with an n-sided regular polygonal	
4.10		lled spherical bodies. Finite conductivity	
		Non-spinning sphere	00

	4.10.2	Non-spinning sphere. Including internal radiation	82
4.11	Thin-wa	lled cylindrical bodies. Finite conductivity	83
	4.11.1	Non-spinning two-dimensional circular cylinder	83
	4.11.2	Spinning two-dimensional circular cylinder	85
	4.11.3	Circular cylinder. solar radiation parallel to axis of symmetry	8
	4.11.4	Cylindrical surface of rectangular cross section. Solar radiation normal to face	89
4.12	Thin-wa	lled conical bodies. Conductivity	94
	4.12.1	Non-spinning cone	94
5 Plane	etarv rad	diation	98
5.1	-		
5.2		conductive planar surfaces	
V	5.2.1	Flat plate absorbing and emitting on one side	
5.3	_	conductive spherical surfaces	
	5.3.1	Sphere	
	5.3.2	Hemispherical surface absorbing and emitting on outer face	
5.4	Infinitely	conductive cylindrical surfaces	
	5.4.1	Circular cylinder with insulated bases	107
	5.4.2	Finite height circular cylinder	108
5.5	Infinitely	conductive conical surfaces C/TR 17603-31-03:2021	118
	5.5.1	https://standards.iteh.ai/catalog/standards/sist/77f1195e-e5ea-49f9-a3c3- Circulargcone with insular processes in 17603-31-03-2021	118
	5.5.2	Finite height circular cone	
6 Albe	do radia	tion	124
6.1	General		124
6.2	Infinitely	conductive planar surfaces	129
	6.2.1	Flat plate absorbing and emitting on one side	129
6.3	Infinitely	conductive spherical surfaces	134
	6.3.1	Sphere	134
6.4	Infinitely	conductive cylindrical surfaces	138
	6.4.1	Circular cylinder with insulated bases	138
Bibliog	raphy		143
Figure	S		
•	-1: The f	function $T_R(A_E/A_I)^{1/4}$ vs. the distance to the Sun. Calculated by the	
	-	piler.	16
Figure 4		unction $T_R(A_E/A_I)^{1/4}$ vs. the optical characteristics of the surface. ed zone of a is enlarged in b . Calculated by the compiler	17

rigure 4-3.	of a is enlarged in b. Calculated by the compiler	18
Figure 4-4:	Ration $(A_I/A_E)^{1/4}$ as a function of γ , in the case of a flat plate. Calculated by the compiler.	20
Figure 4-5:	Ratio $(A_I/A_E)^{1/4}$ as a function of γ and H/R , in the case of a finite height circular cylinder. Calculated by the compiler	24
Figure 4-6:	Ratio $(A/\!/A_E)^{1/4}$ as a function of δ , in the case of a semi-infinite circular cone. Calculated by the compiler.	26
Figure 4-7:	Ratio $(A_I/A_E)^{1/4}$ as a function of δ , in the case of a finite circular cone with insulated base (axial configuration). Calculated by the compiler	28
Figure 4-8:	Ratio $(A/A_E)^{1/4}$ as a function of γ and δ , in the case of a finite height cone. Calculated by the compiler.	30
Figure 4-9:	Ratio $(A_I/A_E)^{1/4}$ as a function of γ and δ , in the case of a cone-cylinder-cone. Calculated by the compiler.	32
Figure 4-10): Ratio $(A_{\rm I}/A_{\rm E})^{1/4}$ as a function of γ and δ , in the case of a cone-cylinder-cone. Calculated by the compiler	33
Figure 4-11	1: Ratio $(A_{\rm I}/A_{\rm E})^{1/4}$ as a function of γ and δ , in the case of a cone-cylinder-cone. Calculated by the compiler	34
Figure 4-12	2: Ratio $(A_l/A_E)^{1/4}$ as a function of γ and δ , in the case of a cone-cylinder-cone. Calculated by the compiler A_l	35
Figure 4-13	3: Ratio $(A_l/A_E)^{1/4}$ as a function of γ and δ_l in the case of a cone-cylinder-cone. Calculated by the compiler.	36
	1: Ratio (A _I /A _E) ^{1/4} as a function of (2) and 8.7 in the case of a cone-cylinder- cone. Calculated by the compiler dards/sist/77f1.195e-e5ea-49f9-a3c3-	37
Figure 4-15	$985470178dfc/ksist-tp-fprcen-clc-tr-17603-31-03-2021$ 5: Ratio $(A_{\rm l}/A_{\rm E})^{1/4}$ as a function of γ and δ , in the case of a cone-cylinder-cone. Calculated by the compiler.	38
Figure 4-16	S: Ratio $(A/\!/A_E)^{1/\!/4}$ as a function of γ and δ , in the case of a cone-cylinder-cone. Calculated by the compiler.	39
Figure 4-17	7: Ratio $(A/\!/A_E)^{1/\!/4}$ as a function of γ and δ , in the case of a cone-cylinder-cone. Calculated by the compiler.	40
Figure 4-18	3: Ratio $(A/A_E)^{1/4}$ as a function of γ and δ , in the case of a cone-cylinder-cone. Calculated by the compiler.	41
Figure 4-19	9: Ratio $(A/\!\!/A_E)^{1/4}$ as a function of γ and δ , in the case of a cone-cylinder-cone. Calculated by the compiler	42
Figure 4-20): Ratio $(A/A_E)^{1/4}$ as a function of γ and δ , in the case of a cone-cylinder-cone. Calculated by the compiler.	43
Figure 4-21	1: Ratio $(A/\!/A_E)^{1/\!/4}$ as a function of γ for any value of $H/\!/R$, in the case of a cone-cylinder-cone. Calculated by the compiler.	44
Figure 4-22	2: Ratio $(A/A_E)^{1/4}$ as a function of γ and H/R , in the case of a cone-cylinder-cone. Calculated by the compiler.	
Figure 4-23	B: Ratio $(A/\!\!/A_E)^{1/4}$ as a function of γ and H/R , in the case of a cone-cylinder-cone. Calculated by the compiler.	46

	Ratio $(A_l/A_E)^{1/4}$ as a function of γ and H/R , in the case of a cone-cylinder-cone. Calculated by the compiler47
	Ratio $(A_l/A_E)^{1/4}$ as a function of γ and H/R , in the case of a cone-cylindercone. Calculated by the compiler48
ŗ	Ratio $(A_I/A_E)^{1/4}$ as a function of H/R , in the case of a prism. The curves plotted are those corresponding to the largest and smallest areas projected from the Sun. Circular cylinder, $n = \infty$. Calculated by the compiler50
r f	Ratio $(A_l/A_E)^{1/4}$ as a function of H/R , in the case of a prism. The curves plotted are those corresponding to the largest and smallest areas projected from the Sun. The values corresponding to $H/R \le 1$ are also plotted in the previous figure. Circular cylinder, $n = \infty$. Calculated by the compiler51
F	Ratio $(A/\!/A_E)^{1/\!/4}$ as a function of $H/\!/R$, in the case of a prism. The curves plotted are those corresponding to the largest and smallest areas projected from the Sun. Circular cylinder, $n = \infty$. Calculated by the compiler
r f	Ratio $(A_I/A_E)^{1/4}$ as a function of H/R , in the case of a prism. The curves plotted are those corresponding to the largest and smallest areas projected from the Sun. The values corresponding to $H/R \le 1$ are also plotted in the previous figure. Circular cylinder, $n = \infty$. Calculated by the compiler53
ŗ	Ratio $(A_I/A_E)^{1/4}$ as a function of H/R , in the case of a prism. The curves plotted are those corresponding to the largest and smallest areas projected from the Sun. Circular cylinder, $n = \infty$. Calculated by the compiler54
r f	Ratio $(A_I/A_E)^{1/4}$ as a function of H/R , in the case of a prism. The curves plotted are those corresponding to the largest and smallest areas projected from the Sun. The values corresponding to $H/R \le 1$ are also plotted in the previous figure. Circular cylinder, $n = \infty$. Calculated by the compiler
Figure 4-32:	Ratio $(A_i/A_E)^{1/6}$ as a function of H/R , in the case of a prism. The curves plotted are those corresponding to the largest and smallest areas projected from the Sun. Circular cylinder, $n = \infty$. Calculated by the compiler
r f	Ratio $(A/\!/A_E)^{1/\!/4}$ as a function of $H/\!/R$, in the case of a prism. The curves plotted are those corresponding to the largest and smallest areas projected from the Sun. The values corresponding to $H/\!/R \le 1$ are also plotted in the previous figure. Circular cylinder, $n = \infty$. Calculated by the compiler
F	Ratio $(A_I/A_E)^{1/4}$ as a function of H/R , in the case of a prism. The curves plotted are those corresponding to the largest and smallest areas projected from the Sun. Circular cylinder, $n = \infty$. Calculated by the compiler58
r f	Ratio $(A_I/A_E)^{1/4}$ as a function of H/R , in the case of a prism. The curves plotted are those corresponding to the largest and smallest areas projected from the Sun. The values corresponding to $H/R \le 1$ are also plotted in the previous figure. Circular cylinder, $n = \infty$. Calculated by the compiler59
F	Ratio $(A_I/A_E)^{1/4}$ as a function of H/R , in the case of a pyramid. The curves plotted are those corresponding to the largest and smallest areas projected from the Sun. Circular cone, $n = \infty$. Calculated by the compiler61
r f	Ratio $(A_I/A_E)^{1/4}$ as a function of H/R , in the case of a pyramid. The curves plotted are those corresponding to the largest and smallest areas projected from the Sun. The values corresponding to $H/R \le 1$ are also plotted in the previous figure. Circular cone, $n = \infty$. Calculated by the compiler62

Figure 4-38	B: Ratio $(A_l/A_E)^{1/4}$ as a function of H/R , in the case of a pyramid. The curves plotted are those corresponding to the largest and smallest areas projected from the Sun. Circular cone, $n = \infty$. Calculated by the compiler	63
Figure 4-39	9: Ratio $(A/A_E)^{1/4}$ as a function of H/R , in the case of a pyramid. The curves plotted are those corresponding to the largest and smallest areas projected from the Sun. The values corresponding to $H/R \le 1$ are also plotted in the previous figure. Circular cone, $n = \infty$. Calculated by the compiler	64
Figure 4-40	D: Ratio $(A/A_E)^{1/4}$ as a function of H/R , in the case of a pyramid. The curves plotted are those corresponding to the largest and smallest areas projected from the Sun. Circular cone, $n = \infty$. Calculated by the compiler	65
Figure 4-41	1: Ratio $(A/\!/A_E)^{1/4}$ as a function of $H/\!/R$, in the case of a pyramid. The curves plotted are those corresponding to the largest and smallest areas projected from the Sun. The values corresponding to $H/\!/R \le 1$ are also plotted in the previous figure. Circular cone, $n = \infty$. Calculated by the compiler	66
Figure 4-42	2: Ratio $(A/A_E)^{1/4}$ as a function of H/R , in the case of a pyramid. The curves plotted are those corresponding to the largest and smallest areas projected from the Sun. Circular cone, $n = \infty$. Calculated by the compiler	67
Figure 4-43	3: Ratio $(A/A_E)^{1/4}$ as a function of H/R , in the case of a pyramid. The curves plotted are those corresponding to the largest and smallest areas projected from the Sun. The values corresponding to $H/R \le 1$ are also plotted in the previous figure. Circular cone, $n = \infty$ Calculated by the compiler	68
Figure 4-44	4: Ratio $(A_l/A_E)^{1/4}$ as a function of H/R , in the case of a pyramid. The curves plotted are those corresponding to the largest and smallest areas projected from the Sun. Circular cone, $n = \infty$. Calculated by the compiler	69
Figure 4-45	5: Ratio $(A/A_E)^{1/4}$ as a function of H/R , in the case of a pyramid. The curves plotted are those corresponding to the largest and smallest areas projected from the Sun. The values corresponding to $H/R \le 1$ are also plotted in the previous figure. Circular cone, $n = \infty$. Calculated by the compiler	70
Figure 4-46	6: Ratio $(A_l/A_E)^{1/4}$ as a function of H/R , in the case of a pyramid - prism - pyramid. The curves plotted are those corresponding to the largest and smallest areas projected from the Sun. Cone - cylinder - cone, $n = \infty$. Calculated by the compiler.	71
Figure 4-47	7: Ratio $(A/A_E)^{1/4}$ as a function of H/R , in the case of a pyramid - prism - pyramid. The curves plotted are those corresponding to the largest and smallest areas projected from the Sun. The values corresponding to $H/R \le 1$ are also plotted in the previous figure. Cone - cylinder - cone, $n = \infty$. Calculated by the compiler.	72
Figure 4-48	3: Ratio $(A/A_E)^{1/4}$ as a function of H/R , in the case of a pyramid - prism - pyramid. The curves plotted are those corresponding to the largest and smallest areas projected from the Sun. Cone - cylinder - cone, $n = \infty$. Calculated by the compiler.	73
Figure 4-49	9: Ratio $(A_l/A_E)^{1/4}$ as a function of H/R , in the case of a pyramid - prism - pyramid. The curves plotted are those corresponding to the largest and smallest areas projected from the Sun. The values corresponding to $H/R \le 1$ are also plotted in the previous figure. Cone - cylinder - cone, $n = \infty$. Calculated by the compiler.	74

Figure 4-50	2: Ratio $(A/A_E)^{1/4}$ as a function of H/R , in the case of a pyramid - prism - pyramid. The curves plotted are those corresponding to the largest and smallest areas projected from the Sun. Cone - cylinder - cone, $n = \infty$. Calculated by the compiler.	75
Figure 4-51	: Ratio $(A_I/A_E)^{1/4}$ as a function of H/R , in the case of a pyramid - prism - pyramid. The curves plotted are those corresponding to the largest and smallest areas projected from the Sun. The values corresponding to $H/R \le 1$ are also plotted in the previous figure. Cone - cylinder - cone, $n = \infty$. Calculated by the compiler.	76
Figure 4-52	2: Ratio $(A_l/A_E)^{1/4}$ as a function of H/R , in the case of a pyramid - prism - pyramid. The curves plotted are those corresponding to the largest and smallest areas projected from the Sun. Cone - cylinder - cone, $n = \infty$. Calculated by the compiler.	77
Figure 4-53	B: Ratio $(A_l/A_E)^{1/4}$ as a function of H/R , in the case of a pyramid - prism - pyramid. The curves plotted are those corresponding to the largest and smallest areas projected from the Sun. The values corresponding to $H/R \le 1$ are also plotted in the previous figure. Cone - cylinder - cone, $n = \infty$. Calculated by the compiler.	78
Figure 4-54	Fractio $(A_i/A_E)^{1/4}$ as a function of H/R , in the case of a pyramid - prism - pyramid. The curves plotted are those corresponding to the largest and smallest areas projected from the Sun. Cone - cylinder - cone, $n = \infty$. Calculated by the compiler	79
J	5: Ratio $(A_l/A_E)^{1/4}$ as a function of H/R , in the case of a pyramid - prism - pyramid. The curves plotted are those corresponding to the largest and smallest areas projected from the Sun. Cone - cylinder - cone, $n = \infty$. Calculated by the compiler CEN/CLC/TR 17603-31-03:2021 https://standards.iteh.ai/catalog/standards/sist/77f1195e-e5ea-49f9-a3c3-	80
Figure 4-56	intps://standards.iten.ai/catalog/standards/sist///11195e-e5ea-4999-a3c3- Elemperature distribution on sphere No spin3 No internal radiation. Calculated by the compiler.	81
Figure 4-57	Temperature distribution on sphere including internal radiation. No spin. Calculated by the compiler	83
Figure 4-58	3: Temperature distribution on a two-dimensional cylinder. No spin. No internal radiation. Calculated by the compiler.	85
Figure 4-59	e: Temperature distribution on a two - dimensional spinning cylinder for several μ an γ values. No internal radiation. Calculated by the compiler	86
Figure 4-60): Temperature distribution on a two - dimensional spinning cylinder for several μ an γ values. No internal radiation. Calculated by the compiler	87
Figure 4-61	: Temperature distribution on cylinder. No spin. No internal radiation. From Nichols (1961) [11].	89
Figure 4-62	2: Temperature distribution on a cylindrical surface whose cross section is a rectangle of aspect - ratio λ = 0,5. No internal radiation. Calculated by the compiler.	91
Figure 4-63	Temperature distribution on a cylindrical surface whose cross section is a rectangle on aspect - ration λ = 1. No internal radiation. Calculated by the compiler.	92
Figure 4-64	Temperature distribution on a cylindrical surface whose cross section is a rectangle on aspect - ration λ = 2. No internal radiation. Calculated by the compiler.	93

Figure 4-65	i: Temperature distribution on cone. No spin. No internal radiation. From Nichols (1961) [11]	95
Figure 4-66	E: Temperature distribution on cone. No spin. No internal radiation. From Nichols (1961) [11]	96
Figure 4-67	: Temperature distribution on cone. No spin. No internal radiation. From Nichols (1961) [11]	97
Figure 5-1:	The ratio T_{RP}/T_P vs. the optical characteristics of the surface for different values of F_{SP} . Shaded zone of a is enlarged in b . Calculated by the compiler.	100
Figure 5-2:	Radiation equilibrium temperature T_{RP} vs. ratio T_{RP} T_P . Incoming radiation from different planets. After NASA - SP - 3051 (1965)	101
Figure 5-3:	Different estimates of radiation equilibrium temperature T_{RP} vs. T_{RP} T_{P} , for radiation from the Earth. Plotted from data by Johnson (1965) [9]	102
Figure 5-4:	F_{SP} as a function of λ and h/R_P in the case of a flat plate absorbing and emitting on one side. Calculated by the compiler	104
Figure 5-5:	F_{SP} as a function of h/R_P in the case of a sphere. Calculated by the compiler.	105
Figure 5-6:	F_{SP} as a function of λ and h/R_P in the case of a hemispherical surface absorbing and emitting on outer face. Calculated by the compiler	106
Figure 5-7:	F_{SP} as a function of \mathbb{R} and $h \setminus R_P$ in the case of a circular cylinder with insulated bases. Calculated by the compiler	108
Figure 5-8:	F_{SP} as a function of λ and h/R_P in the case of a finite height circular cylinder. Calculated by the compiler. KSIST-IP FORCEN/CLC/IR 17603-31-03:2021	109
Figure 5-9:	F _{SP} as a function of λ and h λ $R_{\rm B}$ in the case of a finite-height circular cylinder. Calculated by the compiler-dc-tr-17603-31-03-2021.	110
Figure 5-10	F_{SP} as a function of λ and h/R_P in the case of a finite height circular cylinder. Calculated by the compiler.	111
Figure 5-11	: F_{SP} as a function of λ and h/R_P in the case of a finite height circular cylinder. Calculated by the compiler.	112
Figure 5-12	F_{SP} as a function of λ and h/R_P in the case of a finite height circular cylinder. Calculated by the compiler.	113
Figure 5-13	F_{SP} as a function of λ and h/R_P in the case of a finite height circular cylinder. Calculated by the compiler.	114
Figure 5-14	F_{SP} as a function of λ and h/R_P in the case of a finite height circular cylinder. Calculated by the compiler.	115
Figure 5-15	i: F_{SP} as a function of λ and h/R_P in the case of a finite height circular cylinder. Calculated by the compiler.	116
Figure 5-16	F_{SP} as a function of λ and h/R_P in the case of a finite height circular cylinder. Calculated by the compiler.	117
Figure 5-17	: F_{SP} as a function of λ and h/R_P in the case of a circular cone with insulated base. Calculated by the compiler.	119
Figure 5-18	F_{SP} as a function of λ and h/R_P in the case of a circular cone with insulated base. Calculated by the compiler.	

Figure 5-19: F_{SP} as a function of λ in the case of a finite height circular cone. Calculated	400
by the compiler.	122
Figure 5-20: F_{SP} as a function of λ in the case of a finite height circular cone. Calculated by the compiler.	123
Figure 6-1: The ratio T_{RA}/T_A vs. the optical characteristics of the surface for different values of F . Shaded zone of a is enlarged in b . Calculated by the compiler	125
Figure 6-2: Albedo equilibrium temperature, T_{RA} , vs. dimensionless ratio T_{RA}/T_A . Incoming albedo from different planets. After Anderson (1969) [1]	126
Figure 6-3: Different estimates of albedo equilibrium temperature T_{RA} , vs. T_{RA} / T_A in case of the Earth. Calculated by the compiler.	127
Figure 6-4: Albedo view factor F vs. h / R_P for different values of θ_S in the case of a flat plate (λ = 0°, ϕ_c = 180°). From Bannister (1965) [2]	130
Figure 6-5: Albedo view factor F vs. h/R_P for different values of θ_S in the case of a flat plate ($\lambda = 30^\circ$, $\phi_c = 0^\circ$). From Bannister (1965) [2]	131
Figure 6-6: Albedo view factor F vs. h/R_P for different values of θ_S in the case of a flat plate ($\lambda = 30^\circ$, $\phi_c = 90^\circ$). From Bannister (1965) [2]	132
Figure 6-7: Albedo view factor F vs. h/R_P for different values of θ_S in the case of a flat plate ($\lambda = 30^\circ$, $\phi_c = 180^\circ$). From Bannister (1965) [2]	133
Figure 6-8: Albedo view factor F vs. h / R_P for different values of θ_S in the case of a sphere. From Cunningham (1961) [6]	135
Figure 6-9: Albedo view factor F vs. h / R for different values of θ_S in the case of a sphere. From Cunningham (1961) [6]	136
Figure 6-10: Albedo view factor F Vs. h / R for different values of θ _S in the case of a sphere. Calculated by the compiler ards/sist/77f1195e-e5ea-49f9-a3c3-985470178dfc/ksist-tp-fprcen-clc-tr-17603-31-03-2021	137
Figure 6-11: Albedo view factor F vs. h/R_P for different values of θ_S in the case of a cylinder ($\lambda = 0^\circ$, $\phi_c = 0^\circ$, 180°). From Bannister (1965) [2]	139
Figure 6-12: Albedo view factor F vs. h/R_P for different values of θ_S in the case of a cylinder (λ = 60°, ϕ_C = 0°). From Bannister (1965) [2]	140
Figure 6-13: Albedo view factor F vs. h/R_P for different values of θ_S in the case of a cylinder (λ = 60°, ϕ_c = 90°). From Bannister (1965) [2]	141
Figure 6-14: Albedo view factor F vs. h/R_P for different values of θ_S in the case of a cylinder (λ = 60°, ϕ_C = 180°). From Bannister (1965) [2]	142
Tables	
Table 5-1: Relevant data on the Planets and the Moon.	103
Table 6-1: Relevant data on the Planets and the Moon.	128

European Foreword

This document (FprCEN/CLC/TR 17603-31-03:2021) has been prepared by Technical Committee CEN/CLC/JTC 5 "Space", the secretariat of which is held by DIN.

This document is currently submitted to the Vote on TR.

It is highlighted that this technical report does not contain any requirement but only collection of data or descriptions and guidelines about how to organize and perform the work in support of EN 16603-31

This Technical report (FprCEN/CLC/TR 17603-31-03:2021) originates from ECSS-E-HB-31-01 Part 3A.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights.

This document has been prepared under a mandate given to CEN by the European Commission and the European Free Trade Association.

This document has been developed to cover specifically space systems and has therefore precedence over any TR covering the same scope but with a wider domain of applicability (e.g.: aerospace).

This document is currently submitted to the CEN CONSULTATION, 4919-3303-

985470178dfc/ksist-tp-fprcen-clc-tr-17603-31-03-2021

1 Scope

Factors affecting the equilibrium temperature of a spacecraft surface are described in this Part 3 using simple geometrical configurations and basic assumptions.

Methods for conducting calculations on the affect of Solar, planetary and albedo radiation are given taking into consideration the internal and immediate environmental factors and incorporating the various configurations and dimensions of the constituent parts.

The Thermal design handbook is published in 16 Parts

TR 17603-31-01	Thermal design handbook – Part 1: View factors	
TR 17603-31-02	Thermal design handbook - Part 2: Holes, Grooves and Cavities	
TR 17603-31-03	Thermal design handbook – Part 3: Spacecraft Surface Temperature	
TR 17603-31-04	Thermal design handbook – Part 4: Conductive Heat Transfer	
TR 17603-31-05	https://standarcis.irch.aic.aic.aic.aic.aic.aic.aic.aic.aic.aic	
TR 17603-31-06	Thermal design handbook – Part 6: Thermal Control Surfaces	
TR 17603-31-07	Thermal design handbook – Part 7: Insulations	
TR 17603-31-08	Thermal design handbook – Part 8: Heat Pipes	
TR 17603-31-09	Thermal design handbook – Part 9: Radiators	
TR 17603-31-10	Thermal design handbook – Part 10: Phase – Change Capacitors	
TR 17603-31-11	Thermal design handbook – Part 11: Electrical Heating	
TR 17603-31-12	Thermal design handbook – Part 12: Louvers	
TR 17603-31-13	Thermal design handbook – Part 13: Fluid Loops	
TR 17603-31-14	Thermal design handbook – Part 14: Cryogenic Cooling	
TR 17603-31-15	Thermal design handbook – Part 15: Existing Satellites	
TR 17603-31-16	Thermal design handbook – Part 16: Thermal Protection System	

2 References

EN Reference	Reference in text	Title
EN 16601-00-01	ECSS-S-ST-00-01	ECSS System - Glossary of terms

All other references made to publications in this Part are listed, alphabetically, in the **Bibliography**.

iTeh STANDARD PREVIEW (standards.iteh.ai)

kSIST-TP FprCEN/CLC/TR 17603-31-03:2021 https://standards.iteh.ai/catalog/standards/sist/77f1195e-e5ea-49f9-a3c3-985470178dfc/ksist-tp-fprcen-clc-tr-17603-31-03-2021

Terms, definitions and symbols

3.1 Terms and definitions

For the purpose of this Standard, the terms and definitions given in ECSS-S-ST-00-01 apply.

3.2 Symbols

emitting area of the spacecraft, [m²] AE $\mathbf{A}_{\mathbf{I}}$ area of the spacecraft projected from the sun, [m²] Bireh STAN Dearameters of the truncated power series development of Fsp, see clause 6.1 (standards.iteh.ai) F Albedo view factor from spacecraft to planet kSIST-TP FprCEN/CLC/TR 17603-31-03:2021 htt Fsr/standards.iteh.ai/catalog/sviewrfactor/from spacecraft to planet 985470178dfc/ksist-tp-fprcen-clc-tr-17603-31-03-2021 mean radius of the planet, [m] $\mathbf{R}_{\mathbf{P}}$ S solar flux, [W.m⁻⁴] $S = S_0.d^{-2}$ solar constant, $S_0 = 1353 \text{ W.m}^{-2}$ S_0 T temperature, [K] T_A Albedo temperature, [K] $T_A = [aS_0/\sigma d^2]^{1/4}$ T_R radiation equilibrium temperature of the infinitely conductive spacecraft, [K] T_{RA} radiation equilibrium temperature of the infinitely conductive spacecraft under Albedo radiation, [K] \mathbf{T}_{RP} radiation equilibrium temperature of the infinitely conductive spacecraft under planetary radiation, [K] equivalent planet temperature, [K] $T_P = (e/\sigma)^{1/4}$ TР T_{s} equivalent surrounding temperature, [K] mean Albedo of the planet a