

SLOVENSKI STANDARD kSIST-TP FprCEN/CLC/TR 17603-31-09:2021

01-maj-2021

Vesoljska tehnika - Priročnik za toplotno zasnovo - 9. del: Radiatorji		
Space Engineering - Thermal design handbook - Part 9: Radiators		
Raumfahrttechnik - Handbuch für thermisches Design - Teil 9: Radiatoren		
Ingénierie spatiale - Manuel de conception thermique Partie 9: Radiateurs		
Ta slovenski standard je istoveten z: FprCEN/CLC/TR 17603-31-09		
kSIST-TP FprCEN/CLC/TR 17603-31-09:2021		
https://standards.iteh.ai/catalog/standards/sist/62cd5cec-e090-4b0d-b42a-		
2f912bd442a9/ksist-tp-fprcen-clc-tr-17603-31-09-2021		
49.140 Vesoljski sistemi in operacije Space systems and operations		
kSIST-TP FprCEN/CLC/TR 17603-31- en,fr,de 09:2021		

2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

kSIST-TP FprCEN/CLC/TR 17603-31-09:2021

iTeh STANDARD PREVIEW (standards.iteh.ai)

kSIST-TP FprCEN/CLC/TR 17603-31-09:2021 https://standards.iteh.ai/catalog/standards/sist/62cd5cec-e090-4b0d-b42a-2f912bd442a9/ksist-tp-fprcen-clc-tr-17603-31-09-2021

TECHNICAL REPORT RAPPORT TECHNIQUE TECHNISCHER BERICHT

FINAL DRAFT FprCEN/CLC/TR 17603-31-09

February 2021

ICS 49.140

English version

Space Engineering - Thermal design handbook - Part 9: Radiators

Ingénierie spatiale - Manuel de conception thermique -Partie 9: Radiateurs

Raumfahrttechnik - Handbuch für thermisches Design -Teil 9: Radiatoren

This draft Technical Report is submitted to CEN members for Vote. It has been drawn up by the Technical Committee CEN/CLC/JTC 5.

CEN and CENELEC members are the national standards bodies and national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.

Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.

Warning : This document is not a Technical Report It is distributed for review and comments. It is subject to change without notice and shall not be referred to as a Technical Report.

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

© 2021 CEN/CENELEC All rights of exploitation in any form and by any means reserved worldwide for CEN national Members and for **CENELEC** Members.

Table of contents

Europ	ean For	eword	7
1 Scop	De		8
2 Refe	rences		9
3 Term	ns. defir	nitions and symbols	10
3.1	Terms	and definitions	
3.2	Symbol	ls	
		2005	10
			۲ ۲
4.1	Genera		12
4.2			13
	4.2.1	Planar to planar (standards.iteh.ai)	13
	4.2.2	Culindrical Provide Text Control of the Control of	
	4.2.3	https://standards.iteh.ai/catalog/standards/sist/62cd5cec-e090-4b0d-b42a-	20
	4.2.4	Conical 19 1901 Encodesist-tp-fprcen-clc-tr-17603-31-09-2021	ا ∠
	4.2.5		23
	4.2.0		20 20
1 2	4.2.1 Einite ta		20
4.3			
	4.3.1	Planar to planar. Three dimensional configurations	
	4.3.2	Planar to planar. Three-dimensional configurations	
	4.3.3	Planar to cylindrical, three dimensional configurations	40
	4.3.4	Planar to conical	40 54
	4.3.3		
	4.3.0		ວບ ຄວ
	4.3.7		02
	4.3.0		04
	4.3.9		
	4.3.1U		12
	4.3.11		12
	4.3.12	Spherical to spherical	

4.4	Additior	nal sources of data	80
5 Spec	ular su	rfaces	103
5.1	Genera	I	103
5.2	Two pla	nar specular surfaces	105
	5.2.1	Two-dimensional configurations	105
	5.2.2	Parallel, directly opposed rectangles of same width and length	109
	5.2.3	Rectangles of same width and length with one common edge	115
5.3	Planar	specular and planar diffuse surface	118
	5.3.1	Two dimensional cavities. Cylinders of quadrangular cross section	118
5.4	Non-pla	nar specular surfaces	123
	5.4.1	Concentric cylinder or concentric spheres	123
Bibliog	graphy		125

Figures

Figure 4-1: Geometric notation for view factors between diffuse surface	13
Figure 4-2: Values of F_{12} as a function of x and y. From Hamilton & Morgan (1952) [15]	15
Figure 4-3: Values of F_{12} as a function of x and y. From Hamilton & Morgan (1952) [15]	17
Figure 4-4: F ₁₂ vs. <i>H</i> for different values of dH. Infinitesimal surface to very thin coaxial annulus with finite radius. Calculated by the compiler	18
Figure 4-5: Values of <i>F</i> ₁₂ vs. <i>A</i> for different values of <i>H</i> . The analytical expression (case I) is only valid in the shadowed region. Calculated by the compiler.	19
Figure 4-6: Values of F_{12} as a function of H and λ . Calculated by the compiler	20
Figure 4-7: Values of F_{12} as a function of H and λ , for $\delta = 10^{\circ}$. Calculated by the compiler.	21
Figure 4-8: Values of F_{12} as a function of H and λ , for $\delta = 30^{\circ}$. Calculated by the compiler.	22
Figure 4-9: Values of F_{12} as a function of H and λ , for $\delta = 50^{\circ}$. Calculated by the compiler.	22
Figure 4-10: Values of F_{12} as a function of H and λ , for $\delta = 80^{\circ}$. Calculated by the compiler.	23
Figure 4-11: F_{12} as a function of H in the case of an infinitesimal sphere viewing a finite sphere. Calculated by the compiler.	24
Figure 4-12: F_{12} as a function of angle λ for different values of the dimensionless distance <i>H</i> . Calculated by the compiler.	25
Figure 4-13: F_{12} as a function of λ and H , for $A = 0,5$. Calculated by the compiler.	26
Figure 4-14: F_{12} as a function of λ and H , for $A = 1,5$. Calculated by the compiler.	27
Figure 4-15: F_{12} as a function of λ and H , for $A = 2$. Calculated by the compiler.	27
Figure 4-16: Values of F_{12} vs. <i>M</i> for different values of <i>L</i> . Configuration 1, $\beta = 10^{\circ}$. Calculated by the compiler.	29

Figure 4-17: Values of F_{12} vs. <i>M</i> for different values of <i>L</i> . Configuration 1, $\beta = 20^{\circ}$. Calculated by the compiler.	.29
Figure 4-18: Values of F_{12} vs. <i>M</i> for different values of <i>L</i> . Configuration 2, $\beta = 10^{\circ}$. Calculated by the compiler.	.30
Figure 4-19: Values of F_{12} vs. <i>M</i> for different values of <i>L</i> . Configuration 2, $\beta = 20^{\circ}$. Calculated by the compiler.	.30
Figure 4-20: Values of F_{12} as a function of X and Y, for $Z = 0$. Calculated by the compiler.	.33
Figure 4-21: Values of F_{12} as a function of X and Y, for Z = 0,5. Calculated by the compiler.	.33
Figure 4-22: Values of F_{12} as a function of X and Y, for $Z = 1$. Calculated by the compiler.	.34
Figure 4-23: Values of F_{12} as a function of X and Y, for Z = 2. Calculated by the compiler.	.34
Figure 4-24: Values of F_{12} as a function of X and Y, for Z = 5. Calculated by the compiler.	.35
Figure 4-25: Values of F_{12} as a function of X and Y. Calculated by the compiler	.36
Figure 4-26: F_{12} as a function of <i>L</i> and <i>N</i> for Φ = 30°. Table from Feingold (1966) [11], figure from Hamilton & Morgan (1952) [15]	.39
Figure 4-27: F_{12} as a function of L and N for Φ = 60°. Table from Feingold (1966) [11], figure from Hamilton & Morgan (1952) [15]	.39
Figure 4-28: F_{12} as a function of <i>L</i> and <i>N</i> for $\Phi = 90^{\circ}$. Table from Feingold (1966) [11], figure from Hamilton & Morgan (1952) [15] _{3=31-09/2021} .	.40
Figure 4-29: F_{12} as a function of L and N for $\phi = 120^{62}$ Table from Feingold (1966) [11], figure from Hamilton & Morgan (1952) [15].	.40
Figure 4-30: F_{12} as a function of <i>L</i> and <i>N</i> for $\Phi = 150^{\circ}$. Table from Feingold (1966) [11], figure from Hamilton & Morgan (1952) [15]	.41
Figure 4-31: Values of F_{12} as a function of <i>L</i> for different regular polygons. <i>n</i> is the number of sides of the polygon. From Feingold (1966) [11]	.43
Figure 4-32: View factors between different faces of a honeycomb cell as a function of the cell length, <i>L</i> . From Feingold (1966) [11].	.44
Figure 4-33: Values of F_{12} as a function of R_1 and R_2 in the case of two parallel coaxial discs. Calculated by the compiler.	.46
Figure 4-34: Values of F_{12} and F_{13} as a function of the parameter K. From Jakob (1957) [19].	.48
Figure 4-35: F_{12} as a function of T and R. Calculated by the compiler.	.49
Figure 4-36: F_{12} as a function of T and R. Calculated by the compiler.	.50
Figure 4-37: F_{12} as a function of T and R. Calculated by the compiler.	.50
Figure 4-38: F_{12} as a function of Z, for different values of the dimensionless radius R. Calculated by the compiler.	.52
Figure 4-39: F_{12} as a function of R_2 for different values of the sector central angel α . Calculated by the compiler.	.57
Figure 4-40: F_{12} as a function of Z for different values of R_2 . Calculated by the compiler	.58

Figure 4-41	: F_{12} from a sphere to both sides of a coaxial intersecting disc, vs. <i>H</i> , for different values of <i>R</i> . Calculated by the compiler	59
Figure 4-42	2: F12 from a sphere to the upper side of a coaxial intersecting disc, vs. H (- 1 $\leq H \leq$ 1), for different values of R . Calculated by the compiler	59
Figure 4-43	: Values of F_{12} as a function of Z and R. Calculated by the compiler	60
Figure 4-44	F12 as a function of <i>x</i> in the case of two infinitely long parallel cylinders of the same diameter. Calculated by the compiler	64
Figure 4-45	: Plot of <i>F</i> ₁₂ vs. L for different values of <i>R</i> . From Hamilton & Morgan (1952) [15]	66
Figure 4-46	: Plot of <i>F</i> ₂₂ , vs. <i>R</i> for different values of <i>L</i> . From Hamilton & Morgan (1952) [15]	67
Figure 4-47	: <i>F</i> ₁₂ as a function of <i>R</i> for different values of <i>Z</i> . Calculated by the compiler	70
Figure 4-48	: Values of F_{12} as a function of H and L_2 for $L_1 = 1$. Calculated by the compiler.	71
Figure 4-49	: Values of F_{12} as a function of S and D, for δ = 15°. From Campbell & McConnell (1968) [4].	73
Figure 4-50): Values of F_{12} as a function of S and D, for δ = 30°. From Campbell & McConnell (1968) [4].	74
Figure 4-51	: Values of F_{12} as a function of S and D, for δ = 45°. From Campbell & McConnell (1968) [4]. A.N.D.A.R.D. P.R.F.V.I.F.W.	75
Figure 4-52	:: Values of <i>F</i> ₁₂ as a function of Sand D, for ∂ = 60 °. From Campbell & McConnell (1968) [4].	76
Figure 4-53	: Values of F12 as a function of S and R. From Jones (1965) [21].	79
Figure 4-54	https://standards.iteh.ai/catalog/standards/sist/62cd5ccc-e090-4b0d-b42a- : Values of F ₁₂₁ as a junction of S and e From Campbell & McConnell (1968) [4]	80
Figure 5-1:	Values of F_{12} as a function of R and H. Calculated by the compiler.	.106
Figure 5-2:	Values of F_{11}^{s}/ρ_{2}^{s} as a function of <i>R</i> and <i>H</i> . Calculated by the compiler	.106
Figure 5-3:	Values of F^{s}_{12} as a function of <i>R</i> for different values of ϕ . Calculated by the compiler.	.108
Figure 5-4:	Values of F^{s}_{11}/ρ_2^{s} as a function of <i>R</i> for different values of ϕ . Calculated by the compiler.	.109
Figure 5-5:	Values of F^{s}_{12} as a function of <i>R</i> and <i>X</i> for <i>Z</i> = 1. Calculated by the compiler.	.110
Figure 5-6:	Values of F^{s}_{11}/ρ_{2}^{s} as a function of <i>R</i> and <i>X</i> for <i>Z</i> = 1. Calculated by the compiler.	.111
Figure 5-7:	Values of F^{s}_{12} as a function of <i>R</i> and <i>X</i> for <i>Z</i> = 5. Calculated by the compiler.	.111
Figure 5-8:	Values of F^{s}_{11}/ρ_{2}^{s} as a function of <i>R</i> and <i>X</i> for <i>Z</i> = 5. Calculated by the compiler.	.112
Figure 5-9:	Values of F^{s}_{12} as a function of <i>R</i> and <i>X</i> for <i>Z</i> = 10. Calculated by the compiler.	.112
Figure 5-10	: Values of F^{s}_{11}/ρ_{2}^{s} as a function of <i>R</i> and <i>X</i> for <i>Z</i> = 10. Calculated by the compiler.	.113

Figure 5-11	1: Values of F_{12}^{s} as a function of <i>R</i> and <i>X</i> for <i>Z</i> = 15. Calculated by the compiler.	113
Figure 5-12	2: Values of F_{11}^{s}/ρ_{2}^{s} as a function of <i>R</i> and <i>X</i> for <i>Z</i> = 15. Calculated by the compiler.	114
Figure 5-13	3: Values of F^{s}_{12} as a function of <i>R</i> and <i>X</i> for <i>Z</i> = 20. Calculated by the compiler.	114
Figure 5-14	4: Values of F_{11}^{s}/ρ_{2}^{s} as a function of <i>R</i> and <i>X</i> for <i>Z</i> = 20. Calculated by the compiler.	115
Figure 5-15	5: Values of F_{12}^{s} vs. aspect ratio, <i>L</i> , for different values of <i>R</i> . ϕ = 30°. Calculated by the compiler.	116
Figure 5-16	6: Values of F_{11}^{s}/ρ_{2}^{s} vs. aspect ratio, <i>L</i> , for different values of <i>R</i> . ϕ = 30°. Calculated by the compiler.	117
Figure 5-17	7: Values of F^{s}_{12} vs. aspect ratio, <i>L</i> , for different values of <i>R</i> . ϕ = 45°. Calculated by the compiler.	117
Figure 5-18	B: Values of F^{s}_{12} and F^{s}_{11}/ρ_{2}^{s} vs. aspect ratio, <i>L</i> , for the limiting values of ϕ . Calculated by the compiler.	118
Figure 5-19	9: Values of F^{s}_{11} vs. ϕ for different values of the specular reflectance, ρ^{s} . Calculated by the compiler	120
Figure 5-20	D: Values of F^{s}_{12} vs. ϕ for different values of the specular reflectance, ρ^{s} . Calculated by the compiler	121
Figure 5-21	1: Values of F^{s}_{31} vs. ϕ for different values of the specular reflectance, ρ^{s} . Calculated by the compiler.	121
Figure 5-22	2: Values of F_{32} s vs.s of for different values of the specular reflectance, ρ^s . Calculated by the compileratog/standards/sist/62cd5cec+c090+4b0d-b42a+	122
Figure 5-23	3: Values of F_{33}^{2} vs. ϕ for different values of the specular reflectance, ρ^{s} . Calculated by the compiler.	122
Figure 5-24	4: Values of F_{34}^{s} vs. ϕ for different values of the specular reflectance, ρ^{s} . Calculated by the compiler	123

European Foreword

This document (FprCEN/CLC/TR 17603-31-09:2021) has been prepared by Technical Committee CEN/CLC/JTC 5 "Space", the secretariat of which is held by DIN.

This document is currently submitted to the Vote on TR.

It is highlighted that this technical report does not contain any requirement but only collection of data or descriptions and guidelines about how to organize and perform the work in support of EN 16603-31.

This Technical report (FprCEN/CLC/TR 17603-31-09:2021) originates from ECSS-E-HB-31-01 Part 1A.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights.

This document has been prepared under a mandate given to CEN by the European Commission and the European Free Trade Association.

This document has been developed to cover specifically space systems and has therefore precedence over any TR covering the same scope but with a wider domain of applicability (e.g.: aerospace).

This document is currently submitted to the CEN CONSULTATION. 4b0d-b42a-

2f912bd442a9/ksist-tp-fprcen-clc-tr-17603-31-09-2021

1 Scope

In this Part 9 of the spacecraft thermal control and design data handbooks, view factors of diffuse and specular thermal surfaces are discussed.

For diffuse surfaces, calculations are given for radiation emission and absorption between different configurations of planar, cylindrical, conical, spherical and ellipsoidal surfaces for finite and infinite surfaces.

For specular surfaces the affect of reflectance on calculations for view factors is included in the calculations. View factors for specular and diffuse surfaces are also included.

The Thermal design handbook is published in 16 Parts

e	i'leh S'l'ANDARD PREVIEW
TR 17603-31-01	Thermal design handbook – Part 1: View factors
TR 17603-31-02	Thermal design handbook – Part 2: Holes, Grooves and Cavities
TR 17603-31-03	kThermal design handbook Part 3: Spacecraft Surface Temperature
TR 17603-31-04	https://standards.iteh.ai/catalog/standards/sist/62gf5cev4.cc90_db/dt.h42p 2f912bd442a9/ksist-p-forcer-clc-tr-17603-31-09-2021
TR 17603-31-05	Thermal design handbook – Part 5: Structural Materials: Metallic and
	Composite
TR 17603-31-06	Thermal design handbook – Part 6: Thermal Control Surfaces
TR 17603-31-07	Thermal design handbook – Part 7: Insulations
TR 17603-31-08	Thermal design handbook – Part 8: Heat Pipes
TR 17603-31-09	Thermal design handbook – Part 9: Radiators
TR 17603-31-10	Thermal design handbook – Part 10: Phase – Change Capacitors
TR 17603-31-11	Thermal design handbook – Part 11: Electrical Heating
TR 17603-31-12	Thermal design handbook – Part 12: Louvers
TR 17603-31-13	Thermal design handbook – Part 13: Fluid Loops
TR 17603-31-14	Thermal design handbook – Part 14: Cryogenic Cooling
TR 17603-31-15	Thermal design handbook – Part 15: Existing Satellites
TR 17603-31-16	Thermal design handbook – Part 16: Thermal Protection System

2 References

EN Reference	Reference in text	Title
EN 16601-00-01	ECSS-S-ST-00-01	ECSS System - Glossary of terms
TR 17603-31-03	ECSS-E-HB-31-01 Part 3	Thermal design handbook – Part 3: Spacecraft
		Surface Temperature

All other references made to publications in this Part are listed, alphabetically, in the **Bibliography**.

iTeh STANDARD PREVIEW (standards.iteh.ai)

kSIST-TP FprCEN/CLC/TR 17603-31-09:2021 https://standards.iteh.ai/catalog/standards/sist/62cd5cec-e090-4b0d-b42a-2f912bd442a9/ksist-tp-fprcen-clc-tr-17603-31-09-2021

3 Terms, definitions and symbols

3.1 Terms and definitions

For the purpose of this Standard, the terms and definitions given in ECSS-S-ST-00-01 apply.

3.2 Symbols

$\mathbf{A}_{\mathbf{i}}$	surface area of the i-th surface, [m ²]
Bi	energy flux leaving surface, <i>i</i> . often called radiosity,
iTeh _{Fij}	[W.m ⁻²] STANDARD PREVIEW view factor from diffuse surface, <i>Ai</i> to diffuse surface, (standa, ds.iteh.ai)

F(i1,i2,...iii)(ji1j2,T.P.jii)rCENview/factor from the ensemble of diffuse surfaces, Aii, https://standards.iteh.ai/catalog/stAizJarAii/sto/the/Ensemble of/diffuse-surfaces, Aji, 2f912bd442a9/ksist-tp-<u>Aiz-enAj</u>k-tr-17603-31-09-2021

Fij ^s	view factor from specular surface A_i to specular surface A_j
\mathbf{H}_{i}	energy flux incident on surface <i>i</i> , [W.m ⁻²]
Ki2	term which appears in the expression for the view factor between elements of parallel plates, $K_{i2} = A_i F_{ii'}$
Kmn(i,j,k,p,q,)	fraction of the radiative energy leaving A_m which reaches A_n after <i>i</i> perfectly specular reflections from surface A_i , <i>j</i> from surface A_j , <i>k</i> from surface A_k ,
S	distance between two differential elements, [m]
Т	temperature, [K]
βi	angle from normal to surface <i>i</i> , [angular degrees]
3	hemispherical emittance of a (diffuse-gray) surface
ρ^{d}	hemispherical diffuse reflectance of a (diffuse-gray) surface

ρ ^s	specular reflectance of a (gray) surface, it is assumed to be independent of incident angle
σ	Stefan-Boltzmann constant, S = 5,6697x10 ⁻⁸ W.m ⁻² .K ⁻⁴

Other symbols, mainly used to define the geometry of the configurations, are introduced when required.

iTeh STANDARD PREVIEW (standards.iteh.ai)

kSIST-TP FprCEN/CLC/TR 17603-31-09:2021 https://standards.iteh.ai/catalog/standards/sist/62cd5cec-e090-4b0d-b42a-2f912bd442a9/ksist-tp-fprcen-clc-tr-17603-31-09-2021

4 Diffuse surfaces

4.1 General

The view factor, F_{12} , between the diffuse surface A_1 and A_2 , is the fraction of the energy leaving the isothermal surface A_1 that arrives at A_2 .

If the receiver surface is infinitesimal, the view factor is infinitesimal for both infinitesimal and finite emitting surfaces, and is given by the expression

$$dF_{12} = \frac{\cos \beta_1 \cos \beta_2}{\pi S^2} dA_2$$
iTeh STANDARD PREVIEW

$$(standards iteh ai)$$
[4-1]

when both surfaces are infinitesimal and by lards. Iteh.al)

$$\frac{\text{kSIST-TP FprCEN/CLC/TR 17603-31-09:2021}}{\text{https://standards.iteh.ai/catalog/andardeo/sisp62cdscp_e090-4b0d-b42a-2f912bd44dfig/ksist-tp-fprcfen-clc-tr-17503-31-d4-2021}$$
[4-2]

when A_1 is finite.

If the receiver surface is finite, the view factor is finite for both infinitesimal and finite emitting surfaces, and is given by the expression

$$F_{12} = \int_{A_2} \frac{\cos \beta_1 \cos \beta_2}{\pi S^2} dA_2$$
 [4-3]

when A_1 is infinitesimal, and by

$$F_{12} = \frac{1}{A_1} \int_{A_1 A_2} \frac{\cos \beta_1 \cos \beta_2}{\pi S^2} dA_2 dA_1$$
 [4-4]

when A_1 is finite.

Figure 4-1: Geometric notation for view factors between diffuse surface.

Regardless of which surfaces are considered, their view factors satisfy the following reciprocity relation:

 $A_1F_{12} = A_2F_{21}$

If we consider the diffuse surfaces A_1 , A_2 and A_3 , the view factor between the surfaces A_1 and $A_2 + A_3$ is

 $F_{1(2,3)} = F_{12} + F_{13},$

when the receiver surface is formed by two surfaces, and

iTeh ST
$$A_{2,3}$$
 $\rightarrow A_{RP}^{A,FP} + A_{3}FP$ VIEW [4-5]
(standards.iteh.ai)

when the emitting surface is formed by two surfaces. notice that the hotation $F_{1(2,3)}$ and $F_{(2,3)1}$ will be used in the following data sheets. 21912bd442a9/ksist-tp-fprcen-clc-tr-17603-31-09-2021

When an enclosure of N surfaces A_1, A_2, \dots, A_n is considered, their view factors satisfy the relation

$$\sum_{j=1}^{N} F_{ij} = 1$$
 [4-6]

for any surface *A_i*. This relationship results from the fact that the overall heat transfer in the enclosure should be zero.

4.2 Infinitesimal to finite surfaces

4.2.1 Planar to planar

4.2.1.1 Two-dimensional configurations

A plane point source dA_1 and any surface A_2 generated by an infinitely long line moving parallel to itself and to the plane dA_1 .