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European Foreword

This document (CEN/CLC/TR 17603-31-10:2021) has been prepared by Technical Committee
CEN/CLC/JTC 5 “Space”, the secretariat of which is held by DIN.

It is highlighted that this technical report does not contain any requirement but only collection of data
or descriptions and guidelines about how to organize and perform the work in support of EN 16603-
31.

This Technical report (TR 17603-31-10:2021) originates from ECSS-E-HB-31-01 Part 10A.

Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such
patent rights.

This document has been prepared under a mandate given to CEN by the European Commission and
the European Free Trade Association.

This document has been developed to cover specifically space systems and has therefore precedence
over any TR covering the same scope butwith:a wider domain of applicability (e.g.: aerospace).
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1
Scope

Solid-liquid phase-change materials (PCM) are a favoured approach to spacecraft passive thermal
control for incident orbital heat fluxes or when there are wide fluctuations in onboard equipment.

The PCM thermal control system consists of a container which is filled with a substance capable of

undergoing a phase-change. When there is an the increase in surface temperature of spacecraft the
PCM absorbs the excess heat by melting. If there is a temperature decrease, then the PCM can provide

heat by solidifying.

Many types of PCM systems are used in spacecrafts for different types of thermal transfer control.

Characteristics and performance of phase control materials are described in this Part. Existing PCM

systems are also described.

The Thermal design handbook is publishéd @n:16 Parts

TR 17603-31-01
TR 17603-31-02
TR 17603-31-03
TR 17603-31-04
TR 17603-31-05

TR 17603-31-06
TR 17603-31-07
TR 17603-31-08
TR 17603-31-09
TR 17603-31-10
TR 17603-31-11
TR 17603-31-12
TR 17603-31-13
TR 17603-31-14
TR 17603-31-15
TR 17603-31-16

Thermal design handbook — Part 1: View factors

Thermal designihandbook +Rart21Holes Grooves and Cavities

Thermal design handbook — Part 3: Spacecraft Surface Temperature

Thermal design handbook — Part 4: Conductive Heat Transfer

Thermal design handbook — Part 5: Structural Materials: Metallic and
Composite

Thermal design handbook — Part 6: Thermal Control Surfaces
Thermal design handbook — Part 7: Insulations

Thermal design handbook — Part 8: Heat Pipes

Thermal design handbook — Part 9: Radiators

Thermal design handbook — Part 10: Phase — Change Capacitors
Thermal design handbook — Part 11: Electrical Heating

Thermal design handbook — Part 12: Louvers

Thermal design handbook — Part 13: Fluid Loops

Thermal design handbook — Part 14: Cryogenic Cooling
Thermal design handbook — Part 15: Existing Satellites

Thermal design handbook — Part 16: Thermal Protection System
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3

Terms, definitions and symbols

3.1 Terms and definitions

For the purpose of this Standard, the terms and definitions given in ECSS-5-ST-00-01 apply.

3.2 Abbreviated terms

The following abbreviated terms are defined and used within this Standard.

ATC
B'& K
GfW
HEPP
HLS
IHPE
IKE
LDEF
MEK
MLI
PCM
SINDA
SS
SSM
S day
TIG

TIROS

air traffic control (aerosat)
Brennan & Kroliczek
Gessellschaft fiir Weltraumforschung

heat pipe experiment package

international heat pipe experiment

institut fiir kernenenergetik (university of Stuttgart)
long duration exposure facility

methyl-ethyl ketone

multilayer insulation

phase-change material

systems improved numerical differencing analyzer
stainless steel

second surface mirror

stoichiometric day, see clause 8.5

tungsten-inert gas

television and infra-red observation satellite

11
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TOC
TCC

TPHP

tag open cup
tag closed cup

transporter heat pipe

Other Symbols, mainly used to define the geometry of the configuration, are introduced when

required.

3.3 Symbols
A

E

Emax

Tm
To
Tr

AT

hy

h:
Ppo
qo
qR

s(t)

cross-sectional area, [m?]
modulus of elasticity, [Pa]
maximum energy stored in the PCM device, []J]

thickness of the PCM device, one-dimensional model,
[m]

mass, [kg]

heat transfer rate, [W]

temperature, [K]

melting (or freezing) temperature, [K]
temperature of the components being controlled, [K]
reference temperature, [K]

excursion temperature, [K], AT = To—Twu
specific heat, [J.kg.K™]

heat of fusion, [J.kg™]

heat of transition, [J.kg™]

thermal conductivity, [W.m . K™]
vapor pressure, [Pa]

heat flux to the PCM device, one-dimensional model,
[W.m™2]

heat flux from the PCM device to the heat sink, one-
dimensional model, [W.m™2]

interface position, measured from x = 0, one-

12



Subscripts

tmux

too

Oult
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dimensional model, [m]

time, [d], [h], [min], [s]

time for complete melting, [h]

time for melting 90% of the volume of the PCM, [h]
geometrical coordinate, one-dimensional model, [m]
thermal diffusivity, [m2.s7!], a=k/pc

thermal expansion coefficient, volumetric (unless
otherwise stated), [K™]

dynamic viscosity, [Pa.s]
density, [kg.m™]

surface tension, [N.m™]
ultimate tensile strength, [pa]

isothermal compressibility, [Pa™]

Container

Filler

Phase-Change Material
Total

Liquid

Solid

13
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