INTERNATIONAL STANDARD

ISO 8528-2

Reciprocating internal combustion engine driven alternating current generating sets —

Part 2: Engines

Groupes électrogènes à courant alternatif entraînés par moteurs alternatifs à combustion

Partie 2: Moteurs

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 8528-2:2018

https://standards.iteh.ai/catalog/standards/sist/e9b65cae-ee86-459d-8dc6-3b7967f89765/iso-8528-2-2018

ISO 8528-2:2005(E)

Contents		Page	
Fore	word3		
1	Scope2		
2	Normative references2		
3	Terms, symbols, and definitions2		
4	Other regulations and additional requirements7		
5 5.1 5.2 5.3	General characteristics		
6 6.1 6.2 6.3	Speed characteristics		
7 7.1 7.2 7.3	RIC engine load acceptance		
8 8.1 8.2 8.3	Vibration and noise		
9	Heat balance		
10	Inlet and exhaust system11		
11	Starting ability11		
12	Fuel, lubricants and coolants11		
13	Governing system values		
Bibli	ography13		

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following URL: www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 70, Internal combustion engines. 66-3679 (7189765) 180

This third edition cancels and replaces the second edition (ISO 8528-2:2005), of which it constitutes a minor revision.

The main changes compared to the previous edition are as follows:

- the normative references have been updated;
- editorial changes have been made.

A list of all parts in ISO 8528 series can be found on the ISO website.

Deleted:

Deleted:

Deleted:

Reciprocating internal combustion engine driven alternating current generating sets —Part 2: Engines

1 Scope

This document specifies the principal characteristics of Reciprocating Internal Combustion (RIC) engines when used for alternating current (a.c.) generating set applications.

It applies to RIC engines for a.c. generating sets for land and marine use, excluding generating sets used on aircraft or to propel land vehicles and locomotives.

For some specific applications (e.g. essential hospital supplies, high rise buildings), supplementary requirements can be necessary. The provisions of this document can be regarded as the basis for establishing any supplementary requirements.

The terms which define the speed governing and speed characteristics of RIC engines are listed and explained where they apply specifically to the use of the engine for driving a.c. generators.

For other reciprocating-type prime movers (e.g. steam engines), the provisions of this document can be used as a basis for establishing these requirements.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 3046-1, Reciprocating internal combustion engines — Performance — Part 1: Declarations of power, fuel and lubricating oil consumptions, and test methods — Additional requirements for engines for general use

ISO 8528-1, Reciprocating internal combustion engine driven alternating current generating sets — Part 1: Application, ratings and performance

ISO 8528-5, Reciprocating internal combustion engine driven alternating current generating sets — Part 5: Generating sets

3 Terms, symbols, and definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at https://www.iso.org/obp
- IEC Electropedia: available at http://www.electropedia.org/

An explanation of the symbols and abbreviations used in this document is shown in Table 1.

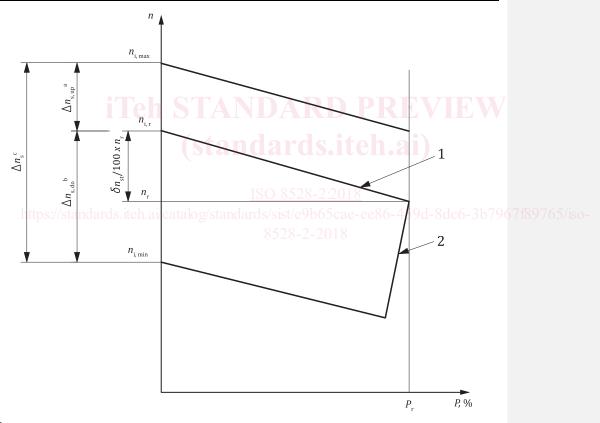
Table 1 — Symbols, terms and definitions

Symbol	Term	Unit	Definition
n	Engine speed	min-1	

n_{r}	Declared speed	min-1	Engine speed at declared power corresponding to the rated frequency of the generating set.	
$n_{ m sf}$	Firing speed	min-1	Engine speed to which an engine must be accelerated from rest by the use of an external supply of energy separate from the fuel feed system before the engine becomes self-sustaining.	
$n_{ m max}$	Maximum permissible speed	min⁻¹	Speed of the engine specified by the RIC engine manufacturer which lies a safe amount below the speed limit (see NOTE 1 and Figure 3).	
n_a	Partial-load speed	min ⁻¹	Steady-state engine speed of an engine running at <i>a</i> % of the declared power given by:	
			$a = 100 \times \frac{P_a}{P_r}$ EXAMPLE:	
	iTeh STAN	DA	at 45 % power, <i>a</i> = 45 (see Figure 2) For <i>a</i> = 45	
	(stand	lar	$ n_{a} = n_{i,r} - \frac{P_{a}}{P_{r}} (n_{i,r} - n_{r})$ $= n_{i,r} - 0.45 (n_{i,r} - n_{r})$	
https:	IS /standards.iteh.ai/catalog/standards	50 85	Corresponding values of declared speed and partial-load speed are based on an unchanged speed setting.	
n _{i,r}	Declared no-load speed	min-1	Steady-state engine speed without load at the same speed setting as for the declared speed, n_{Γ} .	
$n_{ m i,min}$	Lowest adjustable no-load speed	min-1	Lowest steady-state engine speed without load obtainable on the governor speed setting device.	
$n_{ m i,max}$	Highest adjustable no-load speed	min ⁻¹	Highest steady-state engine speed without load obtainable on the governor speed setting device.	
$n_{ m d,s}$	Setting speed of overspeed limiting device	min ⁻¹	Speed of the engine, the exceeding of which activates the overspeed limiting device (see Figure 3).	
$n_{ m d,o}$	Operating speed of overspeed limiting device	min ⁻¹	Speed of the engine at which, for a given setting speed, the limiting device starts to operate (see NOTE 2 and Figure 3).	
$\delta n_{ m s}$	Speed setting related range	%	Range of speed setting, expressed as a percentage of the declared speed given by: $n_1 = n_2 = n_1$	
			$\delta n_{\rm s} = \frac{n_{\rm i,max} - n_{\rm i,min}}{n_{\rm r}} \times 100$	

© ISO 2005 – All rights reserved iii

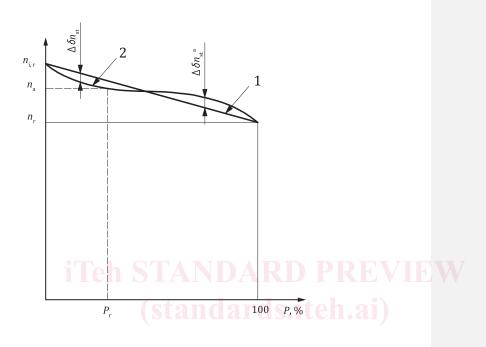
ISO 8528-2:2005(E)


Δn_{s}	Speed setting range	min ⁻¹	Range between the highest and lowest adjustable no-load speeds given by:
			$\Delta n_{\rm S} = n_{\rm i,max} - n_{\rm i,min}$
$\delta n_{ m s,do}$	Speed setting related downward range	%	Downward range of speed setting, expressed as a percentage of the declared speed given by: $\delta n_{\rm s,do} = \frac{n_{\rm i,r} - n_{\rm i,min}}{n_{\rm r}} \times 100$
$\Delta n_{ m s,do}$	Speed setting downward range	min ⁻¹	Range between the declared no-load speed and the lowest adjustable no-load speed given by:
			$\Delta n_{\rm s,do} = n_{\rm i,r} - n_{\rm i,min}$
$\delta n_{ m s,up}$	Speed setting related upward range	%	Upward range of speed setting, expressed as a percentage of the declared speed given by:
	**************************************		$\delta n_{\rm s,up} = \frac{n_{\rm i,max} - n_{\rm i,r}}{n_{\rm r}} \times 100$
$\Delta n_{ m s,up}$	Speed setting upward range	min-1	Range between the highest adjustable no- load speed and the declared no-load speed given by: $\Delta n_{\rm s,up} = n_{\rm i,max} - n_{\rm i,r}$
$\nu_{ m n}$	Speed setting rate of change	%·s-1	Rate of change of speed setting under remote control, expressed as a percentage of the related range of speed setting per
	https://standards.iteh.ai/catalog/sta	ındardı	second given by: $v_{\rm n} = \frac{(n_{\rm i,max} - n_{\rm i,min})/n_{\rm r}}{t} \times 100$
	Adjustment range	min-1	Speed range over which the overspeed limiting device may be adjusted.
8 <i>V</i> _{st}	Engine swept volume	l	
$\delta n_{ m st}$	Speed droop	%	Difference between the declared no-load speed and the declared speed at declared power, for fixed speed setting (see Figure 1). It is expressed as percentage of the declared speed given by: $\delta n_{\rm st} = \frac{n_{\rm i,r} - n_{\rm r}}{n} \times 100$
			"r
$\Delta\delta n_{ m st}$	Speed/power characteristic deviation	%	Maximum deviation from a linear speed power characteristic curve in the power range between no-load and declared power, expressed as percentage of the declared speed (see Figure 2).
	Speed/power characteristic curve		Curve of steady-state speeds in the power range between no-load and declared power plotted against RIC engine power (see Figures 1 and 2).
P	Engine power	kW	
	_ L		

$P_{\rm a}$	Actual engine power	kW	
$p_{ m me}$	Brake mean effective pressure	kPa	
$P_{ m r}$	Declared engine power	kW	
$t_{ m r}$	Response time	S	Time between activation of the overspeed limiting device and commencement of its operation.
$V_{ m st}$	Engine swept volume	l	

 ${\tt NOTE~1}$ The speed limit is the maximum calculated speed which the engine can sustain without risk of damage.

NOTE 2 For a given engine, the operating speed depends on the total inertia of the generating set and the design of the overspeed protection system.


NOTE 3 100 kPa = 1 bar.

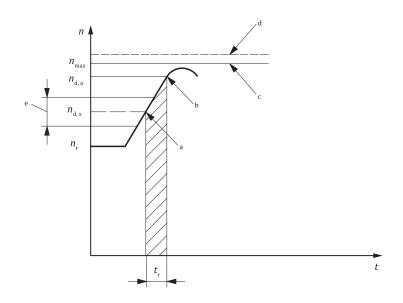
Key

- P engine power
- n engine speed
- $1 \hspace{0.5cm} {\sf speed/power \, characteristic \, curve}$
- 2 power limit
- Upward speed setting.
- $^{\rm b}$ Downward speed setting range.
- c Range of speed setting.

Figure 1 — Speed/power characteristic, range of speed setting

Key

engine power


engine speed

 $linear\ speed/power\ characteristic\ curve_{eh.\ ai}/catalog/standards/sist/e9b65cae-ee86-459d-8dc6-3b7967f89765/iso-power\ characteristic curve_{eh.\ ai}/catalog/standards/sist/e9b65cae-ee86-459d-8dc6-3b7967f89765/iso-power\ characteristic curve_{eh.\ ai}/catalog/standards/sist/e9b65cae-ee86$

speed/power characteristic curve

Speed/power characteristic deviation.

Figure 2 — Speed/power characteristic deviation from the linear curve

Key

- t time
- n engine speed
- a Setting speed of overspeed limiting device.
- b Operating speed of overspeed limiting device.
- c Maximum permissible speed.
- d Speed limit.
- e Adjustment range.

Figure 3 — Typical speed curve illustrating engine overspeed

4 Other regulations and additional requirements

For RIC engines driving a.c. generating sets used on board ships and offshore installations which need to comply with rules of a classification society, the additional requirements of the classification society shall be observed. The classification society name shall be stated by the customer prior to placing the order.

For engines operating in non-classified equipment, any additional requirements are subject to agreement between the manufacturer and customer.

If special requirements need to be met, the name of the relevant authority shall be stated by the customer prior to placing the order.

Any additional requirements shall be subject to agreement between the manufacturer and customer.

5 General characteristics

ISO 8528-2:2018

5.1 Power characteristics h.ai/catalog/standards/sist/e9b65cae-ee86-459d-8dc6-3b7967f89765/iso-

5.1.1 General

The power output required at the RIC engine coupling (net brake power as defined in ISO 3046-1) shall take into account:

- a) the electrical power required for the customer's plant;
- b) the electrical power required for the essential independent auxiliaries (see ISO 3046-1); and
- c) the power loss in the a.c. generator itself.

In addition to the steady-state power requirement, sudden power changes due to additional loads (e.g. caused by electric motor starting) shall be taken into account since they affect the power output characteristics of the RIC engine and voltage characteristics of the a.c. generator.

The generating set manufacturer shall take account of the connected electrical load characteristics and of any load acceptance conditions expected by the customer.

5.1.2 ISO standard power

The power of the RIC engine shall be declared by the engine manufacturer in accordance with the requirements of ISO 3046-1.

ISO 8528-2:2005(E)

5.1.3 Service power

The RIC engine power (see ISO 8528-1) required for a particular application to drive the a.c. generator under site conditions with any essential independent auxiliaries attached/connected (see ISO 3046-1) and with the generating set developing its rated electrical power, shall be determined in accordance with the requirements of ISO 3046-1.

In order to ensure that a continuous supply of electrical power is available to the connected load, it is essential that the actual power output required from the RIC engine driving the a.c. generator is not more than the service power.

5.2 Main characteristics of the RIC engine

The main characteristics of the RIC engine to be used by the generating set manufacturer shall be given by the engine manufacturer and shall include at least:

- a) the power in the conditions laid out in ISO 8528-1 and in the service conditions;
- b) the declared speed; and
- c) the consumption of fuel and lubricating oil in the conditions laid out in ISO 8528-1.

This information enables the generating set manufacturer and customer to confirm that the main characteristics of the RIC engine available are suitable for the intended application.

In order to evaluate the generating set in service conditions (in particular, sudden-load acceptance), it is necessary to establish the Brake Mean Effective Pressure, p_{me} (kPa)of the engine used, corresponding to the engine power when the generating set is operating at its declared power and rated frequency and is defined in Formula (1):

$$p_{\text{me}} = \frac{KP}{V_{\text{st}} \times n_{\text{r}}}$$
(1)
$$V_{\text{st}} \times n_{\text{r}} \times n_{\text{r$$

where

K is 1.2×10^5 for a four-stroke engine:

K is 0.6×10^5 for a two-stroke engine.

5.3 Low-load operation

The customer shall be made aware that extended running under low load may affect the reliability and life of the RIC engine. The RIC engine manufacturer shall provide the generating set manufacturer with data regarding the minimum load the RIC engine is capable of sustaining indefinitely without deterioration. If the generating set is to be operated at lower loads than this minimum, the RIC engine manufacturer shall specify the measures to be adopted and/or corrective procedures to be used to alleviate the problem.

6 Speed characteristics

6.1 General

The choice of governing system fitted to the RIC engine shall be based upon the steady-state and transient speed performance requested by the customer. The generating set manufacturer shall ensure that a suitable governing system, approved by the RIC engine manufacturer, is selected to meet the application requirements.

ISO 3046-4 establishes general requirements and parameters of speed governing systems and general requirements for overspeed protection devices.