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1
Scope

Thermal louvers are thermal control surfaces whose radiation characteristics can be varied in order to
maintain the correct operating temperature of a component subject to cyclical changes in the amount
of heat that it absorbs or generates.

The design and construction of louvers for space systems are described in this Part 12 and a clause is
also dedicated to providing details on existing systems.

The Thermal design handbook is published in 16 Parts

TR 17603-31-01 Thermal design handbook — Part 1: View factors

TR 17603-31-02 Thermal design handbook #Bartj2: Holes, Grooves and Cavities

TR 17603-31-03 Thermal design handbook —/Part 3: Spacecraft Surface Temperature

TR 17603-31-04 Thermal design handbook — Part 4: Conductive Heat Transfer

TR 17603-31-05 Thermal design-handbook”~ Part 5:-Structural Materials: Metallic and
Composite

TR 17603-31-06 Thermal design handbook — Part 6: Thermal Control Surfaces

TR 17603-31-07 Thermal design handbook — Part 7: Insulations

TR 17603-31-08 Thermal design handbook — Part 8: Heat Pipes

TR 17603-31-09 Thermal design handbook — Part 9: Radiators

TR 17603-31-10 Thermal design handbook — Part 10: Phase — Change Capacitors

TR 17603-31-11 Thermal design handbook — Part 11: Electrical Heating

TR 17603-31-12 Thermal design handbook — Part 12: Louvers

TR 17603-31-13 Thermal design handbook — Part 13: Fluid Loops

TR 17603-31-14 Thermal design handbook — Part 14: Cryogenic Cooling

TR 17603-31-15 Thermal design handbook — Part 15: Existing Satellites

TR 17603-31-16 Thermal design handbook — Part 16: Thermal Protection System
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3

Terms, definitions and symbols

3.1 Terms and definitions

For the purpose of this Standard, the terms and definitions given in ECSS-5-ST-00-01 apply.

3.2 Symbols
A

B*
Di

Do

K-

Clause 5: bellows effective area, [m?]

Clause 7: contact surface (bourdon sensing element),
[m?]

radiosity,[Wim72]

dimensionless radiosity, B* = B/oT*

bellows innermost diameter, [m]

bellows outermost diameter, [m]

modulus of elasticity, [N.m™?2]

flexibility, [m.Pa™]

coil force constant, [N.m 2. Angular degrees™]
energy flux impinging on the unit area, [W.m™]
heat flux to the skin arriving from outside, [W.m™]
bellows spring rate, [N.m™]

coil deflection constant, [angular degrees, K™]
Clause 5: coil active length, [m]

Clause 5: length of all convolutions in bellows, [m]

Clause 6: louver blade spacing, [m]

10
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length of a single convolution in bellows measured
along the surface, [m]

torsional moment of a coil, [N.m]

fluid pressure, [Pa]

proportionality limit pressure in a bourdon, [Pa]
heat transfer to the fluid within the bourdon, [J]

heat transfer to the fluid within the bourdon after an
infinitely large time, [J]

equivalent thermal resistance of the louver system, it
is a function of the optical properties of blades, and

inner skin surface, but for a given system R depends
only on the blade angle

coiling radius of a bourdon, [m]

mean radius of the bellows, [m]

heat flux from the space to'the skin, [W.m™72]
solar constant, So = 1353 W.m™

temperature, [K]

bourdon filling fluid temperature, [K]
reference temperature, [K]

temperature differential, [K], AT = T-To
starting fluid temperature, [K]

skin temperature, [K]

local dimensionless temperature, T* = T*/T*sp
inside volume of bellows, [m?3]

sensitivity of a bimetal, [angular degrees, K]
semi-major axis of the bourdon tube cross section, [m]

Clause 5: semi-minor axis of the bourdon tube section,
[m]

Clause 6: louver blade width, [m]

11
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C Clause 5: numerical coefficient given in Table 5-7
under additional data

Clause 7: fluid specific heat, [J.kg™1.K™]

£(0) defined as f(6) = 1 - [1/R(6)]
f=1 fundamental natural frequency, [s™]
h total thermal conductance of a bourdon (sensing

element plus fluid, [W.m2.K™]

1 length of a given metallic strip when the temperature
is T [m]

live length of the bellows, [m]

lo length of a given metallic strip when the temperature
is To, [m]

Mma mass of bellows active convolutions, [kg]

Me mass-of one convolution, [kg]

Msa mass of fluiditrapped in active length at rest, [kg]

myp = pL[0,262(De+DoDi)-0,524D2]

mi : mass;of liquid within the bellows, [kg]. mi = pAl

mi mass on bellows free end, [kg]

m2 bellows mass, [kg]

q louver heat rejection capability, [W.m™]

(shadow heat rejection capability for zero solar input, [W.m™]
t thickness of the strip of the coil, [m]

wall thickness for bellows or bourdon tube, [m]

w width of the strip of the coil, [m]

X coordinate along the louver baseplate, [m]

y,z Coordinates along the outer and inner faces of the
blade, [m]

o sun angle, [angular degrees]

o absorptance

12
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numerical coefficient which appears in the expression
of bourdon flexibility

solar absorptance
spectral absorptance
Clause 5: linear thermal expansion coefficient, [K™]

Clause 5: numerical coefficient which appears in that
expression of bourdon flexibility

Clause 6: Dimensionless coordinate along the louver
baseplate, = x/L

linear thermal expansion coefficient of the high
expansibility component of a bimetal, [K™]

linear thermal expansion coefficient of the low
expansibility component of a bimetal, [K™]

hemispherical total emittance

emittance of‘the skiniinner sutface
emittance of theskin outer surface
dimensionless coordinates, 7=y/L, {=z/L

Clatise: 5: angular deflection of a coil, [angular
degrees]

Clause 6: louver blade angle, [angular degrees]
poisson's ratio

Clauses 5 and 7: fluid density, [kg.m™]

Clause 6: reflectance

spectral reflectance

specular reflectance

initial coiling angle in a bourdon, also called
mechanical preload angle, [angular degrees]

Stefan-Boltzmann constant, o= 15,6697 x 1078
W.m2K™*

time, [s]

13
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