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Figure 6-34: Schematic of thermodynamic,ventisystemi.a).Forced convection. From
Mitchell et al. (1967)."b) Pulsed constant pressure. From Mdller et al.
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Figure 6-35: Thermodynamic phase separator;. From Fradkov:& Troitskii,(1975) [71]......... 183
Figure 6-36: A capillary barrier in’static equilibrium. From McCarthy (1968) [144]. ............. 184

Figure 6-37: Container with a capillary-barrier partition. From McCarthy (1968) [144].
(a) An angular acceleration appears when the interface is formed at the
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(1973) [67]. A Reynolds number through the hole has been plotted vs. the
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Figure 6-40: Results of barrier dynamic stability tests. Weber number-controlled mode.
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Figure 6-42: Damping performance of selected barriers. From Fester (1973) [67]. The
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Figure 6-47: Criterion for the onset of nucleation in subcooled boiling. After Collier
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Figure 6-48: Post height, /, required to position a given ullage, U, under reduced
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Figure 6-54: Limiting vane profiles, Rmin/R and Rmax/R for n = 6, 8 and 12 vanes. Rnin/R
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NEON. 208
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Figure 6-65: Liquid helium (He*) coolers. a) Single stage. b) Dual stage. From Sherman
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From Glaser et al. (1967) [75]. ..coooeeiiieeee 219
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Figure 7-2: Schematic of the apparatus used by the Leiden group to produce helium
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velocities. a) From Van der Heijden, Van der Boog & Kramers (1974) [247].
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psVstpnvn = Const. From.yvan der,Hejden; van derBoog & Kramers (1974)
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Boog & Kramers (1974) [247]....ccoo oo 245

Figure 7-6: Isothermal and iso chemical-potential flows in the v, vs plane. The shaded
region corresponds to subcritical flow (44=0). From van der Heijden, van
der Boog & Kramers (1974) [247]. ..o oot a e 246

Figure 7-7: Correlations between the critical superfluid velocity, vsc1, and the tube

diameter, De. The experimental data have been re-plotted by the compiler

after van Alphen et al. (1969) [246]. They correspond to widely different
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A Pellman, "superfluid wind tunnel". [J Chase, heat conduction T—T;; v,

— 0. A Van Alphen, adiabatic flow rate. O Van Alphen, energy dissipation
technique. ¥ Kramers, second sound attenuation in puresuperfluid flow. @

Van Alphen, critical flow through jeweller's rouge. V Keller and Hammel,
isothermal flow. e Data from reviews of Atkins, and Hammel and Keller. .......... 248

Figure 7-8: Schematic of pressure and temperature drop data as a function of heat flux....249

Figure 7-9: Schematic of L,"2Dg vs. vsDe under steady-state conditions. From Childers
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Figure 7-10: Critical Reynolds number for counterflow heat exchange, Re., as a
function of temperature, T. From Arp (1970) [10]..c.cvvueeiieeericeee e, 253
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Figure 7-11: Diagrams which relate the thermal gradient, d7/dx, to the heat flux, g, in
counterflow heat exchange. 7=1,5 K to 2 K. Calculated by the compiler
after Arp (1970) [10]. cuueer e e et e e e e e e eannes 254
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pressure in conterflow heat exchange. From Bon Mardion, Claudet &

Seyfert (1979) [26]. ...oooo e 256
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is the Kontorovich (1956) [125] solution. Neither solution gives the correct
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values of Bo correspond t0 EqQ. [7-49]. ..ovueeiiiiiiice e, 262
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Figure 7-17: Kapitza conductance, hx, of low Debye temperature metals, Mercury,
Lead, Gold and Silver in contact with Liquid Helium, vs. temperature, T.
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Figure 7-18: Kapitza conductance, hx, of Copper in contact with various low acoustic
impedance-materials-vs.,temperature,. 7. See Table, 7-2.and Table 7-41
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Figure 7-21: The neutral stability curve for Taconis oscillations when £=1. O Dg =24
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Narahara (1979) [269]. .....ccoeeiieeeee 304
Figure 7-22: Device for preventing Taconis oscillations. All the dimensions are in mm.

From Hilal & McIntosh (1976) [88]. ......coooeiiiiiie 305
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Figure 7-24: Backward pressure, p2, as a function of mass flow rate, m, through the
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Figure 7-28: Three typical positions of the liquid-vapor interface. a) Ideal flow
separation. b) Choking. c) Gorter-Mellink flow. From Schotto (1984) [209]....... 327

Figure 7-29: Temperature distribution within a 4 x 10 m thick. Ceramic plug for several
pressure differences. p, = 2,55 x 10 Pa in any case. From Elsner (1973)

Figure 7-30: Time constant, b, as a function of heating power, Q, for the plug described
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