

SLOVENSKI STANDARD oSIST prEN ISO 17139:2022

01-januar-2022

Fina keramika (sodobna keramika, sodobna tehnična keramika) - Termofizikalne lastnosti keramičnih kompozitov - Določanje toplotne razteznosti (ISO 17139:2014)

Fine ceramics (advanced ceramics, advanced technical ceramics) - Thermophysical properties of ceramic composites - Determination of thermal expansion (ISO 17139:2014)

Hochleistungskeramik - Thermophysikalische Eigenschaften keramischer Verbundwerkstoffe - Bestimmung der Wärmeausdehnung (ISO 17139:2014) (standards.iteh.ai)

Céramiques techniques - Propriétés thermophysiques des composites céramiques -Détermination de la dilatation thermique (ISO 17139:2014) https://standards.itch.a/catalog/standards/sist/etc/0795-6ca0-4bbb-8148-

93e4132d89da/osist-pren-iso-17139-2022

Ta slovenski standard je istoveten z: prEN ISO 17139

ICS:

81.060.30 Sodobna keramika

Advanced ceramics

oSIST prEN ISO 17139:2022

en,fr,de

oSIST prEN ISO 17139:2022

iTeh STANDARD PREVIEW (standards.iteh.ai)

oSIST prEN ISO 17139:2022 https://standards.iteh.ai/catalog/standards/sist/efc70795-6ca0-4bbb-8148-93e4132d89da/osist-pren-iso-17139-2022

INTERNATIONAL STANDARD

ISO 17139

First edition 2014-06-15

Fine ceramics (advanced ceramics, advanced technical ceramics) — Thermophysical properties of ceramic composites — Determination of thermal expansion

iTeh ST céramiques techniques — Propriétés thermophysiques des composites

(standards.iteh.ai)

oSIST prEN ISO 17139:2022 https://standards.iteh.ai/catalog/standards/sist/efc70795-6ca0-4bbb-8148-93e4132d89da/osist-pren-iso-17139-2022

Reference number ISO 17139:2014(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

oSIST prEN ISO 17139:2022 https://standards.iteh.ai/catalog/standards/sist/efc70795-6ca0-4bbb-8148-93e4132d89da/osist-pren-iso-17139-2022

COPYRIGHT PROTECTED DOCUMENT

© ISO 2014

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org

Published in Switzerland

ISO 17139:2014(E)

Contents

Page

Fore	eword	iv	
1	Scope		
2	Normative references		
3	Terms and definitions		
4	Principle 4.1 General 4.2 Direct measurement 4.3 Differential method		
5	Apparatus5.1Construction materials5.2Heating and cooling device5.3Temperature measurement5.4Test piece mounting5.5System for measuring and recording the thermal expansion5.6Test piece measurement	2 2 2 2 2 2 3	
6	Specimens 6.1 Test pieces 6.2 Reference pieces 6.3 Dimensions		
7	Procedure	4	
8	Procedure (standards.iteh.ai) Calculations (standards.iteh.ai) 8.1 Direct measurement. 8.2 Differential method <u>oSIST prEN ISO 17139:2022</u> https://standards.iteh.ai/catalog/standards/sist/efc70795-6ca0-4bbb-8148- Test report <u>93c4132d89da/osist-pren-iso-17139-2022</u>	5 	
9	https://standards.iteh.ai/catalog/standards/sist/etc/0/95-6ca0-4bbb-8148- Test report <u>93e4132d89da/osist-pren-iso-17139-2022</u>	6	
Ann	ex A (normative) Direct measurement apparatus		
	ex B (normative) Differential type measurement apparatus		
Bibl	liography		

ISO 17139:2014(E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information

The committee responsible for this document is ISO/TC 206, *Fine ceramics*.

oSIST prEN ISO 17139:2022 https://standards.iteh.ai/catalog/standards/sist/efc70795-6ca0-4bbb-8148-93e4132d89da/osist-pren-iso-17139-2022

Fine ceramics (advanced ceramics, advanced technical ceramics) — Thermophysical properties of ceramic composites — Determination of thermal expansion

1 Scope

This International Standard describes methods for the determination of linear thermal expansion characteristics of ceramic matrix composite materials up to 2 300 K, and is applicable to 1D, 2D, and nD materials.

The method describes general principles of construction, calibration, and operation of the equipment.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO/IEC 17025, General requirements for the competence of testing and calibration laboratories IEC 60584-1, Thermocouples — Part 1: Reference tables (standards.iteh.ai)

3 Terms and definitions OSIST prEN ISO 17139:2022

For the purposes of this document, the following terms and definitions apply.

3.1

linear thermal expansion

positive or negative change in one dimension that occurs when a material is subjected to a change in temperature

3.2

linear thermal expansion coefficient at temperature T

derivative of the length L with respect to temperature at the temperature T, divided by the length at temperature T

$$\alpha_T = \frac{1}{L} \left(\frac{dL}{dT} \right)$$

3.3

mean linear thermal expansion coefficient between temperatures T_1 and T_2

linear thermal expansion between temperatures T_1 and T_2 divided by the temperature increment T_1 to T_2 and the length at temperature T_1

$$\alpha(T_1, T_2) = \frac{L(T_2) - L(T_1)}{L(T_1)} \times \frac{1}{(T_2 - T_1)}$$

3.4

representative volume element RVE

minimum volume which is representative of the material considered

4 Principle

4.1 General

A test piece is heated and subsequently cooled, either at a specified uniform rate or using defined temperature increments. Its change of length and its temperature are measured continuously, or at regular frequent intervals during the imposed temperature cycle.

One of two methods can be used to determine the linear thermal expansion coefficient, either by direct measurement or by a differential method.

4.2 Direct measurement

In this method, the variation in length of the test piece is measured directly. It is necessary to know the change in dimensions of the test piece support system by previous calibration.

The test piece is placed in a specimen holder and is made to contact a displacement transducer by using a push rod, made of the same material as the holder. This assembly is put in a furnace. The differential expansion between the test piece and the test piece holder is measured during the increase and the decrease in temperature.

The apparatus is shown in Figure 1.

4.3 Differential method

iTeh STANDARD PREVIEW

This method consists of measuring the changes in length between a reference piece (6.2) and the test piece. It is not therefore necessary to know the change in dimensions of the test piece support system.

The apparatus is shown in Figure 2.

<u>oSIST prEN ISO 17139:2022</u> https://standards.iteh.ai/catalog/standards/sist/efc70795-6ca0-4bbb-8148-93e4132d89da/osist-pren-iso-17139-2022

5 Apparatus

5.1 Construction materials

The test piece holder and the push rod shall be made from thermomechanically stable materials of the same type, which shall be chemically inert and thermally compatible with the test piece material under the environmental conditions of the test.

NOTE For temperatures above 1 400 °C, it is necessary to employ a vacuum or inert gas atmosphere, with a non-oxide material appropriate for the test environment, such as a grade of dense graphite.

5.2 Heating and cooling device

Furnace, capable of working in a controlled atmosphere when required, and of controlling the temperature of the test piece to within 1 % of its mean temperature, expressed in K.

5.3 Temperature measurement

Thermocouples, in accordance with IEC 60584-1, subject to the upper temperature requirements and environmental consideration, except for tungsten-rhenium couples which may be used at higher temperatures but are not covered by IEC 60584-1, should be individually calibrated. For temperature in excess of 2 000 K, infrared detectors or any suitable device may be used.

5.4 Test piece mounting

The device used shall allow free axial movement of the test piece and of the reference piece in case of differential measurement. The mechanical environment shall minimize stresses. For vertical

measurement apparatus, the test pieces shall be free standing and mechanically stable on the end-plate. For measuring apparatus which is horizontal or inclined to the horizontal, the sideways movement or twist of the test piece shall be restricted, without any restriction of axial movement, by a suitable arrangement.

5.5 System for measuring and recording the thermal expansion

System, capable of measuring displacements to an accuracy better than 0,1 μ m. The system shall allow recording of the test piece temperature and the displacement simultaneously. The system for measuring of displacements shall be periodically calibrated in accordance with <u>Annex A</u> for direct measurement or <u>Annex B</u> for differential measurement.

5.6 Test piece measurement

Device for measuring the test piece dimensions, with an accuracy better than 0,05 mm (e.g. micrometer in accordance with ISO 3611 or callipers in accordance with ISO 6906).

6 Specimens

6.1 Test pieces

The dimensions of the test pieces depend on the type of apparatus used. For differential measurements, the test piece and the reference piece (6.2) shall have the same length L_0 (see <u>Table 1</u>).

The test piece shall be cut in such a way that the axis of desired measurement is related to the principal fibre orientations in accordance with agreement between parties to the measurement.

The end-faces of the length of the test piece shall be plane, parallel to each other, and perpendicular to the long axis.

https://standards.iteh.ai/catalog/standards/sist/efc70795-6ca0-4bbb-8148-93e4132d89da/osist-pren-iso-17139-2022

6.2 Reference pieces

Reference materials shall be chosen so that their properties are as close as possible to the properties of the material to be tested. The reference piece shall have a volume of the same order and, if possible, shall have the same dimensions as the test piece (see <u>Table 1</u>).

For measurement at high temperature (over 2 000 K) under inert atmosphere, reference materials generally used are either tungsten or highly purified graphite. Reference materials shall be procured from a certified laboratory.

6.3 Dimensions

See Table 1.

			Dimensions in minimetres
	Material with small RVE (<u>3.4</u>) such as 1D or 2D	Material with large RVE (3.4) such as nD $(n \ge 3)$	Tolerances
$L_{0,}$ total length	30	70	±0,2
B, width	7	Depending on material and equipment	_
h, thickness	Depending on material and equipment	Depending on material and equipment	Depending on material and equipment
φ, diameter	-	30	_
Parallelism	±0,01	±0,01	_

Table 1 — Recommended test piece dimensions

Dimensions in millimetres

A test piece volume of a minimum of 5 RVE (<u>3.4</u>) is recommended.

The shape and dimensions of the test piece depend on the structure of reinforcement. In the case of material such as 3D, a large test piece is often necessary when the representative volume element is important.

For nD ($n \ge 3$) composites with large RVE, thick beam specimens or cylinders with diameter ø are recommended.

If dimensions different from the recommended ones are used, specimen volume shall be larger than 5 RVE. Tolerances: dimensions: $\pm 0,2$ - Parallelism: $\pm 0,05$.

7 Procedure

In order to simplify calibration procedures, test pieces and reference pieces of the same length should be used. If reference and test pieces have different lengths, then it is necessary to take into account a base line shift. In this case, refer to EN 821-1.

Measure the original length of the test piece at room temperature with devices (5.6).

https://standards.iteh.ai/catalog/standards/sist/efc70795-6ca0-4bbb-8148-The accuracy shall be better than 93e4132d89da/osist-pren-iso-17139-2022

- 0,05 mm for length of 10 mm and above, and
- 0,02 mm for length lower than 10 mm.
- Make sure that the equipment has been calibrated for the type of material prior to the test, according to the procedure described in <u>Annex A</u> for direct measurement [determination of *S* and $\overline{\alpha}(A)$], and in <u>Annex B</u> for differential measurement (*S* and δ).
- Introduce the test piece in test system and provide a good contact between the push rod and the test piece. The force to apply on the specimen depends on the test system and material, but values lower than 1 N are generally sufficient.
- Proceed with heating or cooling at a rate of between 1 K/min and 5 K/min, ensuring a fairly constant temperature gradient along the test piece. If the temperature is changed by steps, the hold temperature shall be maintained until the length of the test piece shows no change for at least 5 min before the measure.
- Record temperature *T* and displacement Δx .

In case of large test pieces, a stepwise temperature rise is recommended.

The mean linear thermal expansion coefficient shall be calculated as the average from the results of tests on three test pieces.

Push rod for test should not have any reaction with the test piece and the reference.