INTERNATIONAL STANDARD

Fourth edition 2018-05

Rubber compounding ingredients — Carbon black — Determination of light transmittance of toluene extract

Ingrédients de mélange du caoutchouc — Noir de carbone — Détermination de la transmittance spectrale de l'extrait toluénique

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 3858:2018 https://standards.iteh.ai/catalog/standards/sist/e766b28d-2316-4bde-8244d5ef5fca9528/iso-3858-2018

Reference number ISO 3858:2018(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 3858:2018 https://standards.iteh.ai/catalog/standards/sist/e766b28d-2316-4bde-8244d5ef5fca9528/iso-3858-2018

COPYRIGHT PROTECTED DOCUMENT

© ISO 2018

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Fax: +41 22 749 09 47 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Page

Contents

Forew	vordi	iv
1	Scope	1
2	Normative references	1
3	Terms and definitions	1
4	Principle	1
5	Reagents	1
6	Apparatus	2
7	Sample preparation	3
8	Conditions of test	3
9	Procedure	3
	9.1 Standardization of spectrophotometer	3
	9.2 Sample testing	4
10	Precision	4
11	Test report	5
Annex	x A (informative) Precision data	6
Biblio	graphy iTeh STANDARD PREVIEW	8

(standards.iteh.ai)

ISO 3858:2018 https://standards.iteh.ai/catalog/standards/sist/e766b28d-2316-4bde-8244d5ef5fca9528/iso-3858-2018

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following URL: www.iso.org/iso/foreword.html. (standards.iteh.ai)

This document was prepared by Technical Committee ISO/TC 45, *Rubber and rubber products*, Subcommittee SC 3, *Raw materials (including lates) for use in the rubber industry*. https://standards.iteh.avcatalog/standards/sist/e766b28d-2316-4bde-8244-

This fourth edition cancels and replaces the third edition (ISO 3858:2008), which has been technically revised. The main changes compared to the previous edition are as follows:

- update of the normative references in <u>Clause 2</u>;
- addition of a clause for terms and definitions (<u>Clause 3</u>);
- changes in the Notes in <u>Clause 6</u>;
- modification of the conditions of test (<u>Clause 8</u>).

Rubber compounding ingredients — Carbon black — Determination of light transmittance of toluene extract

WARNING — Persons using this document should be familiar with normal laboratory practice. This document does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user to establish appropriate safety and health practices.

1 Scope

This document specifies a method for the determination of the light transmittance of the toluene extract from carbon black for use in the rubber industry, as a means of measuring the discolouration caused by the extractable matter.

The light transmittance value provides an estimate of the degree of discolouration caused by the toluene-extractable matter present on the surface of the carbon black.

This method might not be applicable to carbon blacks with a high extractable-matter content.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 1124, Rubber compounding ingredients SQ Carbon black shipment sampling procedures https://standards.iteh.ai/catalog/standards/sist/e766b28d-2316-4bde-8244-ISO 1126:2015, Rubber compounding ingredients SQ Carbon black — Determination of loss on heating

3 Terms and definitions

No terms and definitions are listed in this document.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- IEC Electropedia: available at https://www.electropedia.org/
- ISO Online browsing platform: available at <u>https://www.iso.org/obp</u>

4 Principle

A sample of the carbon black is dried and a test portion weighed out and mixed with a measured volume of toluene at room temperature. The mixture is filtered and a portion of the filtrate transferred to an absorption cell. The light transmittance of the filtrate is measured against pure toluene at a set wavelength using a spectrophotometer.

5 Reagents

Use only reagents of recognized analytical grade and only distilled water or water of equivalent purity.

5.1 Toluene, analytical reagent grade, CAS No. 108-88-3.

6 Apparatus

Standard laboratory equipment together with the following.

6.1 Analytical balance, accurate to 0,1 mg.

6.2 Oven, preferably of the gravity-convection type, capable of temperature regulation within ±1 °C at 125 °C and temperature uniformity within ±5 °C.

6.3 Spectrophotometer, with a tungsten filament lamp, 20 nm maximum spectral passband width, capable of measuring percent transmittance at a wavelength of 425 nm. The instrument shall be of the high-resolution prism or grating type, eliminating the use of an optical filter. The instrument shall be operated in accordance with the manufacturer's operating manual for optimum performance. Some instruments might require the use of a constant-voltage transformer in the electricity circuit in order to compensate for voltage variations of more than 4 V.

NOTE Current types of photometer could be used. However, they might differ in passband width from the specified one, and they might give different transmittance results. Proper calibration of such instruments over the whole transmittance range against a high-resolution spectrophotometer (of a passband width of 2 nm at 425 nm, for example) might be performed for possible corrections of the readings.

6.4 Absorption cells, with parallel sides polished flat to within 10 nm.

The internal distance between the parallel faces shall be 10 mm \pm 0.05 mm.

NOTE If the cell used does not have an optical path length of 10 mm, the transmittance which would be obtained with a 10 mm cell is given by Formula and ards.iteh.al)

$$\log_{10} \tau_0 = \frac{10}{L} \times \log_{10} \tau - \frac{20}{L} + 2$$

$$\frac{\text{ISO 3858:2018}}{\text{d5ef5fca9528/iso-3858-2018}}$$
(1)

where

- τ_0 is the percentage transmittance through a 10 mm cell;
- au is the percentage transmittance observed through the cell used;
- *L* is the optical path length, in millimetres, of the cell used.

6.5 Conical flasks, capacity 100 cm³ or 125 cm³, with ground-glass stoppers.

6.6 Graduated cylinder, capacity 50 cm³, graduated in divisions of 1 cm³, or **automatic dispenser**, bottle type.

6.7 Filter funnel, 75 mm inside diameter at top, made of chemically resistant glass.

6.8 Filter paper, 150 mm diameter, free from matter extractable by toluene and capable of retaining all the carbon black.

6.9 Beakers, capacity 50 cm³ or 100 cm³, with pouring lip.

6.10 Wiping paper, lint free, or optical lens tissue.

6.11 Cotton swabs.

6.12 Fume hood, fully enclosed on three sides, with suitable fume extraction and spark-proof fan and motor.

6.13 Safety container, to discard the used toluene and carbon black extracts.

7 Sample preparation

7.1 Samples shall be taken in accordance with ISO 1124.

7.2 Dry approximately 4 g of the carbon black sample for 1 h at a temperature of 125 °C in the oven (6.2) as specified in ISO 1126:2015, method 1. Allow to cool to ambient temperature in a desiccator. Keep the dried sample in the desiccator until ready for testing.

Carbon black shall not be dried at a temperature higher than that specified, nor dried using infra-red lamps, as some of the extractable matter might be driven off, thus affecting the results.

NOTE Drying is optional for blacks, such as thermal blacks, which are produced by a "dry" process.

8 Conditions of test

The test shall be carried out under standard conditions at 23 °C \pm 2 °C or at 27 °C \pm 2 °C. The reagent and apparatus shall be kept in the test environment for a time sufficient to reach ambient temperature before being used. **Teh STANDARD PREVIEW**

IMPORTANT — Toluene is a hazardous material, therefore this test shall be carried out in a fume hood with suitable fume extraction. Any motor, fan, etc. shall be spark-proof. The hood shall also be free from other fumes or vapours which might contaminate the reagent or equipment used and therefore affect the results. https://standards.iteh.ai/catalog/standards/sist/e766b28d-2316-4bde-8244-

s7/standards.iteh.ai/catalog/standards/sist/e766b28d-2316-4bde-8244d5ef5fca9528/iso-3858-2018

9 Procedure

9.1 Standardization of spectrophotometer

9.1.1 Allow the spectrophotometer (<u>6.3</u>) to warm up for the length of time specified in the instrument operating manual.

9.1.2 Set the wavelength of the instrument at 425 nm. Check the zero reading of the instrument and adjust if necessary.

9.1.3 Place a filter paper (6.8) in a funnel (6.7) and filter approximately 30 cm^3 of toluene (5.1) into a conical flask (6.5), and stopper the flask.

9.1.4 Pour a portion of the filtered toluene into a beaker (<u>6.9</u>).

9.1.5 With the help of the beaker pouring lip, rinse an absorption cell (<u>6.4</u>) three times with the filtered toluene, filling to approximately one-third full each time.

Handle the absorption cell on the ground-glass sides only. Do not touch the smooth, clear sides with the fingers.

9.1.6 Fill the cell with filtered toluene and wipe the outside surfaces thoroughly with wiping paper or optical lens tissue (6.10), while holding the cell in front of a suitable light source for proper inspection.

The contents of the cell shall be free of any contaminant, such as lint particles, which might cause light scattering and influence the results. If necessary, clean the inside surface with a cotton swab (6.11), or wipe again the outside until perfectly clean. If cleaning of the internal cell surface is necessary, restart the procedure as in 9.1.5.

9.1.7 Place the absorption cell in the spectrophotometer, and adjust the instrument to read 100 % transmittance at a wavelength of 425 nm.

9.2 Sample testing

9.2.1 Except for N990, N991, N907 and N908 carbon blacks, weigh out 2 g \pm 0,01 g of the dried carbon black and transfer this test portion to a conical flask (<u>6.5</u>).

For N990 and N991 carbon blacks, weigh out 5,0 g \pm 0,01 g of black; for N907 and N908 carbon blacks, weigh out 3,0 g \pm 0,01 g of black.

9.2.2 Using the graduated cylinder or automatic dispenser (6.6), add 20 cm³ \pm 0,5 cm³ of toluene to the conical flask containing the test portion and stopper the flask (for N990 and N991 add 50 cm³ \pm 0,5 cm³ of toluene, for N907 and N908 add 30 cm³ \pm 0,5 cm³ of toluene).

If necessary, larger quantities of test portion and toluene may be used, but they shall remain in the ratio of 10 cm³ of toluene for every 1 g of carbon black.

(standards.iteh.ai)

9.2.3 Within 5 s of adding the toluene, shake the mixture vigorously by hand for 60 s to 65 s. Alternatively, a mechanical shaker, capable of vigorous shaking at a rate of about 240 shakes per minute, may be used.

https://standards.iteh.ai/catalog/standards/sist/e766b28d-2316-4bde-8244-

d5ef5fca9528/iso-3858-2018

9.2.4 Immediately after shaking, filter the mixture with a funnel (6.7) and a filter paper (6.8) into a second conical flask (6.5), and stopper the flask.

If there is evidence of any trace of carbon in the filtrate, discard it, and repeat.

Change the filter paper for each test portion.

WARNING — Carbon blacks might contain polycyclic aromatic compounds, some of which are known carcinogens. These compounds, when present, are so strongly bound to the carbon black that they are biologically inactive, but they can be removed by the procedure specified in this standard. Care should be taken to avoid skin contact with solvent extracts from carbon blacks.

9.2.5 Using an absorption cell matching in transmittance the one used in <u>9.1.5</u>, or if possible the same cell, repeat with the filtrate (see <u>9.2.4</u>) the operations described in <u>9.1.4</u> to <u>9.1.6</u>.

9.2.6 Place the absorption cell in the standardized (see <u>9.1</u>) spectrophotometer, and record the percentage transmittance at the 425 nm wavelength to the nearest 1 %.

9.2.7 Rinse the absorption cell with clean toluene (5.1) immediately after each determination.

9.2.8 If possible, correct the transmittance values given by the spectrophotometer in accordance with the note to 6.3 and note to 6.4 and record the result to the nearest 1 %.

10 Precision

See <u>Annex A</u>.

11 Test report

The test report shall include the following information:

- a) a reference to this document, i.e. ISO 3858;
- b) full details necessary for the identification of the sample;
- c) an indication of the spectrophotometer spectral passband width;
- d) the result of the light transmittance of the toluene extract, usually rounded to the nearest 1 %;
- e) the date of the test.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 3858:2018 https://standards.iteh.ai/catalog/standards/sist/e766b28d-2316-4bde-8244d5ef5fca9528/iso-3858-2018