INTERNATIONAL STANDARD

ISO 11807-1

Second edition 2021-10

Integrated optics — Vocabulary —

Part 1:

Optical waveguide basic terms and symbols

Optique intégrée — Vocabulaire —

Partie 1: Termes fondamentaux et symboles des guides d'onde optique

(https://standards.iteh.ai) Document Preview

ISO 11807-1:2021

iTeh Standards (https://standards.iteh.ai) Document Preview

ISO 11807-1:2021

https://standards.iteh.ai/catalog/standards/iso/0a6f6230-daa1-4a0b-8565-c70d9115e02a/iso-11807-1-2021

COPYRIGHT PROTECTED DOCUMENT

© ISO 2021

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Foreword			Page
			iv
Intro	ductio	on	v
1	Scop	e	1
2		native references	
3	Terms and definitions		1
	3.1	General	1
	3.2	Waveguide structures	2
	3.3	Modes in integrated ontical waveguides	2
	3.4	Refractive index distribution in integrated optical waveguides	4
	3.5	Properties of integrated optical waveguides	8
	3.6	Refractive index distribution in integrated optical waveguides. Properties of integrated optical waveguides. Loss or attenuation in integrated optical waveguides.	8
Anne	x A (in	formative) Coordinate system	
Anne	x B (in	formative) Symbols and units	13
Bibli	ograpl	1V	14

iTeh Standards (https://standards.iteh.ai) Document Preview

ISO 11807-1:2021

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following URL: www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 172 *Optics and photonics*, Subcommittee SC 9, *Laser and electro optical systems*, in collaboration with the European Committee for Standardization (CEN) Technical Committee CEN/TC 123, *Lasers and photonics*, in accordance with the agreement on technical cooperation between ISO and CEN (Vienna Agreement).

This second edition cancels and replaces the first edition (ISO 11807-1:2001), which has been technically revised. The main changes compared to the previous edition are as follows:

- Terminologies that have not been frequently used over the last 5 to 10 years are revised to those matching to current trends.
- In the revision process, terminologies and definitions are compared to similar terminology definitions in IEC and harmonized.

A list of all parts of ISO 11807 can be found on the ISO website.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.

Introduction

The aim of this document is to clarify the terms of the field of "integrated optics" and to define a unified vocabulary. It is expected that this document will be revised periodically to adopt the requirements of customers and suppliers of integrated optical products. At a later stage, it is planned to add definitions from other International Standards which deal with integrated optics.

Some of the definitions are closely related to definitions given in IEC 60050-731. Wherever this can lead to misunderstanding, integrated optics or integrated optical waveguide should be used together with the defined term.

iTeh Standards (https://standards.iteh.ai) Document Preview

ISO 11807-1:2021

iTeh Standards (https://standards.iteh.ai) Document Preview

ISO 11807-1:2021

Integrated optics — Vocabulary —

Part 1:

Optical waveguide basic terms and symbols

1 Scope

This document defines basic terms for integrated optical devices, their related optical chips and optical elements which find applications, for example, in the fields of optical communications and sensors.

- The coordinate system used in <u>Clause 3</u> is described in <u>Annex A</u>.
- The symbols and units defined in detail in <u>Clause 3</u> are listed in <u>Annex B</u>.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 11807-2, Integrated optics — Vocabulary — Part 2: Terms used in classification

ISO 14881, Integrated optics — Interfaces — Parameters relevant to coupling properties

3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 11807-2 and ISO 14881 and the following apply. Malog/standards/iso/0a616230-daa1-4a0b-8565-c70d9115e02a/iso-11807-1-2021

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at https://www.iso.org/obp
- IEC Electropedia: available at https://www.electropedia.org/

3.1 General

3.1.1

integrated optics

planar optical *waveguide* (3.2.1) structures, manufactured either in or on a *substrate* (3.2.6), including the optical components necessary for the input and output coupling of lightwaves

Note 1 to entry: In this context the term "planar" is used to include small deviations from planarity which are associated with Luneburg lenses, for example. By use of a suitable material, it is possible to integrate both optoelectronic and purely optical functions on the same substrate. The simplest case is electrodes, which can be used for controlling the properties of a waveguide. It is also possible to fabricate lasers and detectors using compound semiconductor materials.

Note 2 to entry: It is envisaged that integrated optical components will be combined with other microtechnologies, such as microelectronics and micromechanics, to build more complex systems. However, such systems are beyond the scope of this document, which will be concerned only with the integrated optical component and its immediate interfaces (see IEC 60050-731:1991, 06-43).

3.2 Waveguide structures

3.2.1

waveguide

transmission line designed to guide optical power consisting of structures which guide lightwaves on the basis of a higher refractive index in the *core* (3.2.4) and a lower refractive index in the surrounding material

Note 1 to entry: The lightwaves in a waveguide propagate in modes.

3.2.2

slab waveguide

waveguide (3.2.1) which confines the optical field between two light guiding parallel surfaces

Note 1 to entry: See <u>Figure A.1</u> where the Cartesian coordinate system is indicated for defining the several terminologies relating to waveguides.

Note 2 to entry: In the previous edition "planar waveguide" was used as a synonym.

3.2.3

strip waveguide

channel waveguide

waveguide (3.2.1) which confines the optical field in a two-dimensional cross-sectional area perpendicular to the lightwave propagating direction (wave vector) along a one-dimensional path

3.2.4

core

region(s) of an integrated optical waveguide (3.2.1), in which the optical power is mainly confined

3.2.5

cladding

material surrounding the waveguide (3.2.1) core (3.2.4)

Note 1 to entry: In contrast to optical fibres for integrated optical waveguides, the cladding often consists of more than one material. Normally, it is necessary to distinguish between lower cladding and upper cladding due to the planar fabrication process of integrated optical waveguides. 1-4a0b-8565-c70d9115e02a/iso-11807-1-20

3.2.6

substrate

carrier onto or within which the integrated optical waveguide (3.2.1) is fabricated

3.2.7

superstrate

cladding (3.2.5) medium or layer structure with which the core (3.2.4) of the integrated optical waveguide (3.2.1) is covered

Note 1 to entry: An electrode, for example, should not be considered as a superstrate. Although it covers the waveguide, it does not influence the optical properties of the waveguide due to an optically insulating layer of sufficient thickness.

3.3 Modes in integrated optical waveguides

3.3.1

mode

eigenfunction of Maxwell's equations, representing an electromagnetic field in a certain space domain and belonging to a family of independent solutions defined by specific boundary conditions

Note 1 to entry: Each mode is defined according to its order in the vertical and horizontal directions and its polarization, the latter being separated into TE- and TM-modes. The mode order is given by indexing TE_{ij} and TM_{ij} , where TE and TM represent the y- and x-direction of polarization, respectively. The symbols, i and j define the mode indices (the order) along x (horizontal) and y (vertical) respectively.

3.3.2

guided mode

electromagnetic wave whose electric field decays monotonically in the transverse direction everywhere outside the core (3.2.4) and which does not lose power

3.3.3

TE mode

transverse electromagnetic wave, where the electric field vector is normal to the direction of propagation; i.e., the electric field vector lies in the transverse plane (*xy*-plane)

Note 1 to entry: Strictly speaking, in strip waveguides, hybrid modes having a non-zero component of the electric and magnetic field in the direction of propagation do exist. Pure TE- and TM-modes are only found in waveguides with a corresponding geometry — for example in slab waveguides. For integrated optical waveguides in planar substrates, the polarization state is usually defined relative to the substrate surface. In slab waveguides, the electric field vector of TE modes lies in the *y*-direction, as a result of the choice of the coordinate system.

3.3.4

TM mode

transverse electromagnetic wave, where the magnetic field vector is normal to the direction of propagation; i.e., the magnetic field vector lies in the transverse plane (*xy*-plane)

Note 1 to entry: In slab waveguides, the magnetic field vector of TM mode lies in the *y*-direction, as a result of the choice of the coordinate system.

3.3.5

evanescent field

time varying electromagnetic field in an integrated optical waveguide (3.2.1) whose field amplitude decays very rapidly and monotonically in the transverse direction outside the *core* (3.2.4), but without an accompanying phase shift

3.3.6

leaky mode

mode (3.3.1) having an *evanescent field* (3.3.5) in the transverse direction outside the *core* (3.2.4) for a finite distance but with an oscillating field in the transverse direction beyond that distance

Note 1 to entry: A leaky mode is attenuated due to radiation losses along the waveguide. 2a/180-11807-1-2021

3.3.7

radiation mode

mode (3.3.1) which transfers power in the transverse direction everywhere external to the core (3.2.4)

3.3.8

single-mode waveguide

waveguide (3.2.1) which supports only one guided mode (3.3.2)

Note 1 to entry: The waveguide mode may consist of two orthogonal states of polarization.

3 3 9

multimode waveguide

waveguide (3.2.1) which supports more than one guided mode (3.3.2)

3.3.10

waveguide cutoff

transition of propagation mode (3.3.1) from being guided to being leaky or radiative

3.3.11

cutoff wavelength

<guided mode> vacuum wavelength above which a given mode (3.3.1) is cutoff

Note 1 to entry: Due to the generally short length of integrated optical waveguides, the measured value strongly depends on the waveguide structure. Therefore, special waveguide structures have to be fabricated to measure the cutoff wavelength. The measurement methods known for optical fibres cannot be applied to integrated optical waveguides.

Note 2 to entry: In fibre optics, the term cutoff wavelength is used to describe the cutoff wavelength of the second-order mode. The reason is that the fundamental mode of a symmetrical dielectric waveguide has no cutoff and the cutoff wavelength of the second order mode determines the single mode condition.

3.3.12

effective refractive index

DEPRECATED: equivalent refractive index

 $n_{\rm off}$

ratio of the speed of light in vacuum to the phase velocity of the *guided mode* (3.3.2)

Note 1 to entry: The effective refractive index is determined by the waveguide dimensions and the refractive index profile of the waveguide, including the medium adjacent to the core of the waveguide and the wavelength. Each mode capable to propagate is characterized by its individual effective or equivalent refractive index.

Note 2 to entry: The term "effective refractive index" is defined by

$$n_{\text{eff}} = \frac{\beta}{k_0}$$

where

https://standards.iteh.ai

eta is the propagation constant of a mode in a waveguide;

 k_0 is the propagation constant of a plane wave in vacuum.

Note 3 to entry: The term "equivalent refractive index" is currently used just for expressing the quantity similar to "group index" defined by catalog/standards/iso/0a6f6230-daa1-4a0b-8565-c70d9115e02a/iso-11807-1-2021

$$n_{\text{eq}} = n + k_0 \frac{\mathrm{d}n}{\mathrm{d}k_0} = n - \lambda \frac{\mathrm{d}n}{\mathrm{d}\lambda}$$

which is defined for a bulk material with the refractive index n. This quantity determines the free spectral range or the spacing of the adjacent peak wavelength $\Delta\lambda$ of resonators, such as Fabry-Perot resonators, given by

$$\Delta \lambda = -\frac{{\lambda_0}^2}{2Ln_{\text{eff}}}$$

where

L is the length of cavity;

 λ_0 is the centre wavelength of the resonator.

3.4 Refractive index distribution in integrated optical waveguides

3.4.1

refractive index profile

refractive index n(x, y) across a cross-section of the waveguide (3.2.1) as a function of position