
Technical Specification — C++
Extensions for Coroutines
Langages de programmation — Extensions C++ pour les Coroutines

ISO/IEC TS
22277

First edition
2017-11

Reference number
ISO/IEC TS 22277:2017(E)

TECHNICAL
SPECIFICATION

© ISO/IEC 2017

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TS 22277:2017
https://standards.iteh.ai/catalog/standards/sist/2e5b9571-3c83-4401-ac8c-

051eedd89fa4/iso-iec-ts-22277-2017

ii © ISO/IEC 2017 – All rights reserved

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2017, Published in Switzerland
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form
or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior
written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of
the requester.

ISO copyright office
Ch. de Blandonnet 8 • CP 401
CH-1214 Vernier, Geneva, Switzerland
Tel. +41 22 749 01 11
Fax +41 22 749 09 47
copyright@iso.org
www.iso.org

ISO/IEC TS 22277:2017(E)

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TS 22277:2017
https://standards.iteh.ai/catalog/standards/sist/2e5b9571-3c83-4401-ac8c-

051eedd89fa4/iso-iec-ts-22277-2017

Contents
Foreword v

1 Scope 1

2 Normative references 1

3 Terms and definitions 1

4 General 2
4.1 Implementation compliance . 2
4.2 Feature testing . 2
4.3 Program execution . 2
4.4 Lexical conventions . 2
4.5 Basic concepts . 2
4.6 Dynamic storage duration . 2

5 Expressions 3
5.3 Unary expressions . 3
5.17 Assignment and compound assignment operators . 5
5.19 Constant expressions . 5
5.20 Yield . 5

6 Statements 6
6.5 Iteration statements . 6
6.6 Jump statements . 7

7 Declarations 8
7.1 Specifiers . 8

8 Declarators 8
8.4 Function definitions . 8

9 Classes 11

10 Derived classes 11

11 Member Access Control 11

12 Special member functions 11
12.1 Constructors . 11
12.4 Destructors . 11
12.8 Copying and moving class objects . 11

13 Overloading 12
13.5 Overloaded operators . 12

14 Templates 12

iii

ISO/IEC TS 22277:2017(E)

© ISO/IEC 2017 – All rights reserved

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TS 22277:2017
https://standards.iteh.ai/catalog/standards/sist/2e5b9571-3c83-4401-ac8c-

051eedd89fa4/iso-iec-ts-22277-2017

15 Exception handling 13

16 Preprocessing directives 13

17 Library introduction 14

18 Language support library 15
18.1 General . 15
18.10 Other runtime support . 15
18.11 Coroutines support library . 15

iv

ISO/IEC TS 22277:2017(E)

© ISO/IEC 2017 – All rights reserved

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TS 22277:2017
https://standards.iteh.ai/catalog/standards/sist/2e5b9571-3c83-4401-ac8c-

051eedd89fa4/iso-iec-ts-22277-2017

Foreword
ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Com-
mission) form the specialized system for worldwide standardization. National bodies that are members of
ISO or IEC participate in the development of International Standards through technical committees establis-
hed by the respective organization to deal with particular fields of technical activity. ISO and IEC technical
committees collaborate in fields of mutual interest. Other international organizations, governmental and
non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information
technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.
The procedures used to develop this document and those intended for its further maintenance are described
in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types
of document should be noted. This document was drafted in accordance with the editorial rules of the
ISO/IEC Directives, Part 2 (see www.iso.org/directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or on
the ISO list of patent declarations received (see www.iso.org/patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation on the voluntary nature of standards, the meaning of ISO specific terms and ex-
pressions related to conformity assessment, as well as information about ISO’s adherence to the World
Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following URL:
www.iso.org/iso/foreword.html.
This document was prepared by Technical Committee ISO/IEC JTC 1, Information technology, Subcom-
mittee SC 22, Programming languages, their environments and system software interfaces.

v

ISO/IEC TS 22277:2017(E)

© ISO/IEC 2017 – All rights reserved

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TS 22277:2017
https://standards.iteh.ai/catalog/standards/sist/2e5b9571-3c83-4401-ac8c-

051eedd89fa4/iso-iec-ts-22277-2017

1 Scope [intro.scope]
1 This document describes extensions to the C++ Programming Language (Clause 2) that enable definition of

coroutines. These extensions include new syntactic forms and modifications to existing language semantics.
2 The International Standard, ISO/IEC 14882:2014, provides important context and specification for this

document. This document is written as a set of changes against that specification. Instructions to modify
or add paragraphs are written as explicit instructions. Modifications made directly to existing text from the
International Standard use underlining to represent added text and strikethrough to represent deleted text.

2 Normative references [intro.refs]
1 The following documents are referred to in the text in such a way that some or all of their content constitutes

requirements of this document. For dated references, only the edition cited applies. For undated references,
the latest edition of the referenced document (including any amendments) applies.

—(1.1) ISO/IEC 14882:2014, Programming Languages – C++

ISO/IEC 14882:2014 is hereafter called the C++ Standard. Beginning with Clause 5, all clause and subclause
numbers, titles, and symbolic references in [brackets] refer to the corresponding elements of the C++ Stan-
dard. Clauses 1 through 4 of this document are unrelated to the similarly-numbered clauses and subclauses
of the C++ Standard.

3 Terms and definitions [intro.defs]
No terms and definitions are listed in this document. ISO and IEC maintain terminological databases for
use in standardization at the following addresses:

— ISO Online browsing platform: available at http://www.iso.org/obp

— IEC Electropedia: available at http://www.electropedia.org/

1

© ISO/IEC 2017 – All rights reserved

Technical Specification — C++ Extensions for Coroutines

TECHNICAL SPECIFICATION ISO/IEC TS 22277:2017(E)

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TS 22277:2017
https://standards.iteh.ai/catalog/standards/sist/2e5b9571-3c83-4401-ac8c-

051eedd89fa4/iso-iec-ts-22277-2017

4 General [intro]
4.1 Implementation compliance [intro.compliance]
Conformance requirements for this specification shall be the same as those defined in subclause 1.4 of the
C++ Standard. [Note: Conformance is defined in terms of the behavior of programs. —end note]

4.2 Feature testing [intro.features]
An implementation that provides support for this document shall define the feature test macro in Table 1.

Table 1 — Feature-test macro
Name Value Header

__cpp_coroutines 201707 predeclared

4.3 Program execution [intro.execution]
In subclause 1.9 of the C++ Standard modify paragraph 7 to read:

7 An instance of each object with automatic storage duration (3.7.3) is associated with each entry
into its block. Such an object exists and retains its last-stored value during the execution of the
block and while the block is suspended (by a call of a function, suspension of a coroutine (5.3.8),
or receipt of a signal).

4.4 Lexical conventions [lex]
In subclause 2.12 of the C++ Standard add the keywords co_await, co_yield, and co_return to Table 4
"Keywords".

4.5 Basic concepts [basic]
In subclause 3.6.1 of the C++ Standard add underlined text to paragraph 3.

3 The function main shall not be used within a program. The linkage (3.5) of main is implementation-
defined. A program that defines main as deleted or that declares main to be inline, static,
or constexpr is ill-formed. The function main shall not be a coroutine (8.4.4). The name main
is not otherwise reserved. [Example: member functions, classes, and enumerations can be called
main, as can entities in other namespaces. —end example]

4.6 Dynamic storage duration [basic.stc.dynamic]
In subclause 3.7.4.1 of the C++ Standard modify paragraph 4 as follows:

4 A global allocation function is only called as the result of a new expression (5.3.4), or called
directly using the function call syntax (5.2.2), called indirectly to allocate storage for a coroutine
frame (8.4.4), or called indirectly through calls to the functions in the C++ standard library.
[Note: In particular, a global allocation function is not called to allocate storage for objects with
static storage duration (3.7.1), for objects or references with thread storage duration (3.7.2), for
objects of type std::type_info (5.2.8), or for an exception object (15.1). —end note]

2

ISO/IEC TS 22277:2017(E)

© ISO/IEC 2017 – All rights reserved

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TS 22277:2017
https://standards.iteh.ai/catalog/standards/sist/2e5b9571-3c83-4401-ac8c-

051eedd89fa4/iso-iec-ts-22277-2017

5 Expressions [expr]
5.3 Unary expressions [expr.unary]
Add await-expression to the grammar production unary-expression:

unary-expression:
postfix-expression
++ cast-expression
-- cast-expression
await-expression
unary-operator cast-expression
sizeof unary-expression
sizeof (type-id)
sizeof ... (identifier)
alignof (type-id)
noexcept-expression
new-expression
delete-expression

5.3.8 Await [expr.await]
Add this subclause to 5.3.

1 The co_await expression is used to suspend evaluation of a coroutine (8.4.4) while awaiting
completion of the computation represented by the operand expression.

await-expression:
co_await cast-expression

2 An await-expression shall appear only in a potentially-evaluated expression within the compound-
statement of a function-body outside of a handler (Clause 15). In a declaration-statement or in
the simple-declaration (if any) of a for-init-statement, an await-expression shall appear only in
an initializer of that declaration-statement or simple-declaration. An await-expression shall not
appear in a default argument (8.3.6). A context within a function where an await-expression can
appear is called a suspension context of the function.

3 Evaluation of an await-expression involves the following auxiliary types, expressions, and objects:
—(3.1) p is an lvalue naming the promise object (8.4.4) of the enclosing coroutine and P is the type

of that object.
—(3.2) a is the cast-expression if the await-expression was implicitly produced by a yield-expression

(5.20), an initial suspend point, or a final suspend point (8.4.4). Otherwise, the unqualified-id
await_transform is looked up within the scope of P by class member access lookup (3.4.5),
and if this lookup finds at least one declaration, then a is
p.await_transform(cast-expression); otherwise, a is the cast-expression.

—(3.3) o is determined by enumerating the applicable operator co_await functions for an argu-
ment a (13.3.1.2), and choosing the best one through overload resolution (13.3). If overload
resolution is ambiguous, the program is ill-formed. If no viable functions are found, o is a.
Otherwise, o is a call to the selected function.

—(3.4) e is a temporary object copy-initialized from o if o is a prvalue; otherwise e is an lvalue
referring to the result of evaluating o.

3

ISO/IEC TS 22277:2017(E)

© ISO/IEC 2017 – All rights reserved

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TS 22277:2017
https://standards.iteh.ai/catalog/standards/sist/2e5b9571-3c83-4401-ac8c-

051eedd89fa4/iso-iec-ts-22277-2017

—(3.5) h is an object of type std::experimental::coroutine_handle<P> referring to the enclo-
sing coroutine.

—(3.6) await-ready is the expression e.await_ready(), contextually converted to bool.
—(3.7) await-suspend is the expression e.await_suspend(h), which shall be a prvalue of type void

or bool.
—(3.8) await-resume is the expression e.await_resume().

4 The await-expression has the same type and value category as the await-resume expression.
5 The await-expression evaluates the await-ready expression, then:

—(5.1) If the result is false, the coroutine is considered suspended. Then, the await-suspend
expression is evaluated. If that expression has type bool and evaluates to false, the
coroutine is resumed. If that expression exits via an exception, the exception is caught, the
coroutine is resumed, and the exception is immediately re-thrown (15.1). Otherwise, control
flow returns to the current caller or resumer (8.4.4) without exiting any scopes (6.6).

—(5.2) If the result is true, or when the coroutine is resumed, the await-resume expression is
evaluated, and its result is the result of the await-expression.

6 [Example:
template <typename T>
struct my_future {

...
bool await_ready();
void await_suspend(std::experimental::coroutine_handle<>);
T await_resume();

};

template <class Rep, class Period>
auto operator co_await(std::chrono::duration<Rep, Period> d) {

struct awaiter {
std::chrono::system_clock::duration duration;
...
awaiter(std::chrono::system_clock::duration d) : duration(d){}
bool await_ready() const { return duration.count() <= 0; }
void await_resume() {}
void await_suspend(std::experimental::coroutine_handle<> h){...}

};
return awaiter{d};

}

using namespace std::chrono;

my_future<int> h();

my_future<void> g() {
std::cout << "just about go to sleep...\n";
co_await 10ms;
std::cout << "resumed\n";
co_await h();

}

auto f(int x = co_await h()); // error: await-expression outside of function suspension context
int a[] = { co_await h() }; // error: await-expression outside of function suspension context

—end example]

4

ISO/IEC TS 22277:2017(E)

© ISO/IEC 2017 – All rights reserved

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TS 22277:2017
https://standards.iteh.ai/catalog/standards/sist/2e5b9571-3c83-4401-ac8c-

051eedd89fa4/iso-iec-ts-22277-2017

5.17 Assignment and compound assignment operators [expr.ass]
Add yield-expression to the grammar production assignment-expression.

assignment-expression:
conditional-expression
logical-or-expression assignment-operator initializer-clause
throw-expression
yield-expression

5.19 Constant expressions [expr.const]
Add bullets prohibiting await-expression and yield-expression to paragraph 2.

— an await-expression (5.3.8);
— a yield-expression (5.20);

5.20 Yield [expr.yield]
Add a new subclause to Clause 5.

yield-expression:
co_yield assignment-expression
co_yield braced-init-list

1 A yield-expression shall appear only within a suspension context of a function (5.3.8). Let e
be the operand of the yield-expression and p be an lvalue naming the promise object of the
enclosing coroutine (8.4.4), then the yield-expression is equivalent to the expression co_await
p.yield_value(e).
[Example:

template <typename T>
struct my_generator {

struct promise_type {
T current_value;
...
auto yield_value(T v) {

current_value = std::move(v);
return std::experimental::suspend_always{};

}
};
struct iterator { ... };
iterator begin();
iterator end();

};

my_generator<pair<int,int>> g1() {
for (int i = i; i < 10; ++i) co_yield {i,i};

}
my_generator<pair<int,int>> g2() {

for (int i = i; i < 10; ++i) co_yield make_pair(i,i);
}

auto f(int x = co_yield 5); // error: yield-expression outside of function suspension context
int a[] = { co_yield 1 }; // error: yield-expression outside of function suspension context

int main() {
auto r1 = g1();

5

ISO/IEC TS 22277:2017(E)

© ISO/IEC 2017 – All rights reserved

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TS 22277:2017
https://standards.iteh.ai/catalog/standards/sist/2e5b9571-3c83-4401-ac8c-

051eedd89fa4/iso-iec-ts-22277-2017

auto r2 = g2();
assert(std::equal(r1.begin(), r1.end(), r2.begin(), r2.end()));

}

—end example]

6 Statements [stmt.stmt]
6.5 Iteration statements [stmt.iter]
Add the underlined text to paragraph 1.

1 Iteration statements specify looping.
iteration-statement:

while (condition) statement
do statement while (expression) ;
for (for-init-statement conditionopt; expressionopt) statement
for co_awaitopt (for-range-declaration : for-range-initializer) statement

6.5.4 The range-based for statement [stmt.ranged]
Add the underlined text to paragraph 1.

1 For a range-based for statement of the form
for co_awaitopt (for-range-declaration : expression) statement

let range-init be equivalent to the expression surrounded by parentheses1

(expression)

and for a range-based for statement of the form
for co_awaitopt (for-range-declaration : braced-init-list) statement

let range-init be equivalent to the braced-init-list. In each case, a range-based for statement is
equivalent to

{
auto && __range = range-init;
for (auto __begin = co_awaitopt begin-expr,
__end = end-expr;
__begin != __end;
co_awaitopt ++__begin) {
for-range-declaration = *__begin;
statement

}
}

where co_await is present if and only if it appears immediately after the for keyword, and
__range, __begin, and __end are variables defined for exposition only, and _RangeT is the type
of the expression, and begin-expr and end-expr are determined as follows: ...

1) this ensures that a top-level comma operator cannot be reinterpreted as a delimiter between init-declarators in the decla-
ration of __range.

6

ISO/IEC TS 22277:2017(E)

© ISO/IEC 2017 – All rights reserved

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TS 22277:2017
https://standards.iteh.ai/catalog/standards/sist/2e5b9571-3c83-4401-ac8c-

051eedd89fa4/iso-iec-ts-22277-2017

	»Ì4ßÉj�±ÖíúJ’ÞÊU(”n7l³]<%wÁ]("|h¾�£Èﬁ™ﬁEía�úÒ[o¢ìçÚ�r�sðV‘�›Q‰e�óÆ&|9T®*u¼æ~«º]˚ Éœ×Ù⁄“���Aa

