INTERNATIONAL STANDARD

First edition 2020-08

Traditional Chinese medicine — Determination of aflatoxins in natural products by LC-FLD

Médecine traditionnelle chinoise — Dosage des aflatoxines dans les produits naturels par CL-DF

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 22283:2020</u> https://standards.iteh.ai/catalog/standards/sist/305a0986-5cc2-4fa7-9755-0cf4943f3176/iso-22283-2020

Reference number ISO 22283:2020(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 22283:2020</u> https://standards.iteh.ai/catalog/standards/sist/305a0986-5cc2-4fa7-9755-0cf4943f3176/iso-22283-2020

COPYRIGHT PROTECTED DOCUMENT

© ISO 2020

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Page

Contents

Forew	ord	iv	
Introductionv			
1	Scope	1	
2	Normative references	1	
3	Terms and definition		
4	Symbols and abbreviated terms		
-	-		
5	Reagents		
6	Apparatus6.1LC-FLD.6.2Chromatographic column6.3Glass sample.6.4Electronic balance.6.5Homogenizer6.6Centrifuge.6.7Volumetric flask	2 2 2 2 2 2 2 2 2	
7	Sample preparation		
8	Test method 8.1 Stock solution and working solution D_PREVIEW 8.2 LC-FLD conditions 8.2.1 General (stanclards.iteh.ai) 8.2.2 LC-FLD conditions and system suitability 8.2.3 Post-column derivatizations and system suitability 8.2.4 Quantification of aflatoxins in the test sample using calibration curves 8.3 Application of test method 313176/iso-22283-2020	3 3 3 3 4 4 4	
9	Sampling and preservation 9.1 Sampling 9.2 Sample storage	5	
Annex	x A (informative) LC-FLD method		
Annex B (informative) Chromatogram of AFG ₂ , AFG ₁ , AFB ₂ and AFB ₁ 8			
		0	
Annex C (informative) Reference of national, regional and organizational limits of aflatoxins in natural products 9			
Annex	Annex D (informative) Method validation		
	Bibliography		
Dibitography			

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 249, *Traditional Chinese medicine*.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at <u>www.iso.org/members.html</u>.

Introduction

Aflatoxins are naturally occurring mycotoxins produced by certain fungi, which can be found in a variety of agriculture products, contaminated foods and natural medicines, including natural products, decoction pieces and manufactured products. At least 14 different aflatoxins, mainly produced by *Aspergillus flavus* and *Aspergillus parasiticus*, have been reported to be produced in nature. Among these, aflatoxin B_1 (AFB₁) is considered the most toxic. Other important aflatoxins include aflatoxin B_2 , M_1 , M_2 , G_1 , G_2 , Q_1 , Q_2 and aflatoxicol. AFB₁, AFB₂, AFG₁ and AFG₂ are produced by *Aspergillus flavus* and *Aspergillus parasiticus*, while AFM₁ and AFM₂ are formed from AFB₁ and AFB₂ metabolism, respectively. It has been well established that most aflatoxin toxicity. There are frequent reports of detection of toxic aflatoxins in herbal medicines. Therefore, aflatoxins, in particular AFB₁ and the total amount of AFB₁, AFB₂, AFG₁ and AFG₂, should be tested and limited as a quality and safety control measure for natural products. There are two main methods to detect aflatoxins in natural products: the liquid chromatography tandem mass spectrometry (LC-MS/MS) method and the liquid chromatography coupled with fluorescence detector (LC-FLD) method. LC-FLD is preferentially chosen due to its high sensitivity, high accuracy and reasonable operating cost (see <u>Annex A, Table A.1</u>).

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 22283:2020</u> https://standards.iteh.ai/catalog/standards/sist/305a0986-5cc2-4fa7-9755-0cf4943f3176/iso-22283-2020

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 22283:2020</u> https://standards.iteh.ai/catalog/standards/sist/305a0986-5cc2-4fa7-9755-0cf4943f3176/iso-22283-2020

Traditional Chinese medicine — Determination of aflatoxins in natural products by LC-FLD

1 Scope

This document specifies the methods for the determination of aflatoxins (AFB₁, AFB₂, AFG₁, AFG₂) in natural products using LC-FLD.

It is applicable to the analysis of aflatoxins in raw materials and manufactured products, including decoction pieces derived from plants and animals.

2 Normative references

There are no normative references in this document.

3 Terms and definition

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- ISO Online browsing platform available at https://www.iso.org/obp

— IEC Electropedia: available at <u>http://www.electropedia.org/</u>

https://standards.iteh.ai/catalog/standards/sist/305a0986-5cc2-4fa7-9755-0cf4943f3176/iso-22283-2020

3.1 aflatoxin

mycotoxin produced mainly by Aspergillus flavus and Aspergillus parasiticus

Note 1 to entry: At least 13 different types of aflatoxin are produced in nature, and most of these are known to be highly toxic and carcinogenic.

Note 2 to entry: Aflatoxin B_1 and the sum of aflatoxins B_1 , B_2 , G_1 and G_2 shall be tested and limited.

4 Symbols and abbreviated terms

aflatoxin B ₁
aflatoxin B ₂
aflatoxin G ₁
aflatoxin G ₂
nigh-performance liquid chromatography
iquid chromatography coupled with fluorescence detector
iquid chromatography tandem mass spectrometry
ם 1 1 1

5 Reagents

The purity of the reagents used shall be checked by running a blank determination. The chromatogram obtained from the solvents shall have a baseline without noticeable peaks that would interfere with targeted aflatoxins.

- **5.1** Water, of appropriate purity (the resistivity of water shall be at least 18,2 MΩ).
- **5.2** Methanol, CH₃OH, of HPLC grade.
- **5.3** Acetonitrile, CH₃CN, of HPLC grade.
- 5.4 Sodium chloride, NaCl, of AR (analytical) grade.

6 Apparatus

6.1 LC-FLD

The LC-FLD apparatus consists of a solvent pump system, a sample injector, a chromatographic column (a column temperature controller may be used), a detector and a data acquisition system (or an integrator or a chart recorder). The mobile phase is supplied from one or several reservoirs and flows through the column and detector at a constant flow rate. The detector shall be a fluorescence detector.

6.2 Chromatographic column

(standards.iteh.ai)

A stainless-steel column sealed with octadecylsilyl silica gel for chromatography shall be used.

<u>ISO 22283:2020</u>

6.3 Glass sample https://standards.iteh.ai/catalog/standards/sist/305a0986-5cc2-4fa7-9755-0cf4943f3176/iso-22283-2020

All glassware shall be thoroughly cleaned before use. The glassware used for aflatoxin analysis shall be placed in a specific container filled with 0,5 % to 1,0 % sodium hypochlorite solution for more than 2 h and then washed with an adequate amount of fresh running water. Finally, all glassware shall be rinsed with distilled water and dried before use.

6.4 Electronic balance

The electronic balance shall be accurate to a minimum of 0,01 mg.

6.5 Homogenizer

The homogenizer shall have a rotation speed of up to 15 000 r/min.

6.6 Centrifuge

The centrifuge shall have a rotation speed of up to 5 000 r/min.

6.7 Volumetric flask

Volumetric flasks with a capacity of 2,0 ml and 50,0 ml shall be used.

7 Sample preparation

1) All natural products shall be crushed into powders and screened through a 24-mesh sieve.

- 2) A mixture of 15,0 g powders and 3,0 g sodium chloride shall be added into a 75,0 ml mixed solution of methanol and water at 70:30 volume fraction.
- 3) The mixture shall be homogenized at a speed of higher than 11 000 rpm for 2 min and centrifuged at 2 500 rpm for 5 min.
- 4) 15 ml of supernatant shall be added to a 50,0 ml volumetric flask and diluted with water, then shaken and filtered through a $0,45 \mu m$ filter paper.
- 5) About 20,0 ml of the filtrate shall be passed through the immunoaffinity column at a flow rate of 3 ml/min. The column shall be washed with 20,0 ml of water and the eluent shall be abandoned until the air has passed through the column to extrude the water.
- 6) The column shall be eluted with methanol and the eluent shall be collected and concentrated to 0,5 ml by nitrogen. The concentrated eluent shall be diluted with 0,5 ml of the mixed solution of methanol and water at 50:50 volume fraction in the HPLC vial before use.

8 Test method

8.1 Stock solution and working solution

Stock solution shall be prepared by mixing a solution of aflatoxin standards (1,0 μ g/ml, 0,3 μ g/ml, 1,0 μ g/ml and 0,3 μ g/ml of AFB₁, AFB₂, AFG₁ and AFG₂, respectively). A series of working solutions shall be prepared by diluting the stock solution to 0,10 ng/ml to 100,00 ng/ml (AFB₁ and AFG₁) and 0,03 ng/ml to 30,00 ng/ml (AFB₂ and AFG₂), respectively, with mobile phase of methanol and acetonitrile.

8.2 LC-FLD conditions (standards.iteh.ai)

8.2.1 General ISO 22283:2020

https://standards.iteh.ai/catalog/standards/sist/305a0986-5cc2-4fa7-9755-

The LC-FLD method based on two different methods of derivatization, pre- and post-column derivatization, shall be used for the simultaneous determination of aflatoxins. Commonly, post-column derivatization methods, such as photochemical derivatization, iodine derivatization and electrochemically generated bromine derivatization, have been applied in many countries, regions and organizations including Europe, China, the United States, Japan and South Korea. The LC-FLD method based on iodine derivatization and photochemical derivatization is recommended for the simultaneous determination of aflatoxins (including AFB₁, AFB₂, AFG₁ and AFG₂) in natural products.

8.2.2 LC-FLD conditions and system suitability

- a) A stainless-steel column sealed with octadecylsilyl silica gel for chromatography measurement shall be used.
- b) The mobile phase of methanol-acetonitrile-water shall be used for isocratic elution.
- c) The post-column derivatization system shall be used for detection of aflatoxins using a fluorescence detector.
- d) The excitation and emission wavelengths of the fluorescence detector shall be set at λ_{ex} = 360 nm (or 365 nm) and λ_{em} = 450 nm, respectively.
- e) The resolution of two adjacent chromatographic peaks should be greater than 1,5.

NOTE λ_{ex} is excitation wavelength (nm) of the fluorescence detector and λ_{em} is emission wavelength (nm) of the fluorescence detector.

8.2.3 Post-column derivatization

8.2.3.1 Iodine derivatization

0,05~% iodine solution prepared by dissolving 0,5 g iodine in 100 ml methanol and diluting to make up to 1 000 ml with water shall be used as the derivatization reagent. The flow rate of the derivatization pump shall be 0,3 ml/min and temperature shall be maintained at 70 °C.

8.2.3.2 Photochemical derivatization

The photochemical derivatization reactor shall be set as 254 nm of UV wavelength. The UV source shall be a mercury lamp (λ = 254 nm). The reactor shall consist of a lamp holder with switch, UV lamp, reactor holder and knitted reactor coil.

8.2.4 Quantification of aflatoxins in the test sample using calibration curves

 $25 \ \mu$ l of each working solution of mixed standard solutions shall be injected into the LC-FLD system to record the peak area of each aflatoxin. The chromatogram of AFG₂, AFG₁, AFB₂ and AFB₁ is presented in <u>Annex B</u>. The calibration curves of aflatoxins shall be established by plotting peak area versus the serially diluted concentration of aflatoxins. Afterwards, the test sample solution shall also be injected into the LC-FLD system to record the peak area of each aflatoxin. Then the contents of AFB₁, AFB₂, AFG₁ and AFG₂ in test samples shall be calculated using the calibration curves.

8.3 Application of test method STANDARD PREVIEW

The described method has been shown to be suitable for the following natural products (see <u>Annex C</u>):

Zingiber officinale Rhizome	Whitmania pigra Body (Hirudo nipponica Body; Whitmania acranulata Body)		
https://standards.iteh.ai/catalog/standards/sist/305a0986-5cc2-4fa7-9755- Pheretima aspergillum (Pheretima vulgaris, ^{0cf4943f3} 1 Buthus martens ii Body Pheretima guillelmi, Pheretima pectinifera)			
Myristica fragrans Seed	Cassia obtusifolia Seed (Cassia tora Seed)		
Ziziphus jujuba Fruit	<i>Hordeum vulgare</i> Fruit		
Polygala tenuifolia Root (Polygala sibirica Root)	<i>Citrus reticulata</i> Peel		
Quisqualis indica Fruit	Platycladas orientalis Seed		
Sterculia lychnophora Seed	Nelumbo nucifera Seed		
Prunus persica Seed (Prunus davidiana Seed)	Scolopendra subspinipes mutilans Body		
Areca catechu Seed	Ziziphus jujuba Seed		
<i>Bombyx mori</i> Body	<i>Coix lacryma-jobi</i> Seed		

This method can also be used in other kinds of natural products, but it shall be demonstrated by method validation. Detailed parameters of method validation are given in <u>Annex D</u>.

9 Sampling and preservation

9.1 Sampling

For each package the following quantities of samples shall be used: no less than 100 g of general medicinal materials and decoction pieces; no less than 25 g of powdered medicinal materials and decoction pieces; 5 g of precious medicinal materials and decoction pieces.

Natural product samples received by the laboratory shall be labelled with information such as the collected source, date and time, correct species of material and name of the appraiser. The testing samples shall include Chinese materia medica (whole medicinal materials) and decoction pieces derived from plants or animals.

On receipt, a sample shall immediately be assigned a unique identification code, which shall be accompanied through all stages of the analysis to the reporting of the results. Records of samples shall be kept by specified person and place.

9.2 Sample storage

Before testing, the sample shall be dried and powdered. Samples shall be prepared immediately and should be stored in the dark in a refrigerator at 4 °C.

If samples cannot be analysed immediately, they shall be stored below 4 °C away from sunlight. The mass of the flask shall be recorded before and after each measurement of the solution.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 22283:2020</u> https://standards.iteh.ai/catalog/standards/sist/305a0986-5cc2-4fa7-9755-0cf4943f3176/iso-22283-2020