INTERNATIONAL STANDARD ISO 22403 First edition 2020-04 # Plastics — Assessment of the intrinsic biodegradability of materials exposed to marine inocula under mesophilic aerobic laboratory conditions — Test methods and requirements Plastiques — Évaluation de la biodégradabilité aérobie inhérente et de la sécurité environnementale des matériaux non flottants exposés à des inocula marins dans des conditions de laboratoire et mésophiles — Méthodes d'essai et exigences #### Document Preview ISO 22403:2020 ## iTeh Standards (https://standards.iteh.ai) Document Preview ISO 22403:2020 https://standards.iteh.ai/catalog/standards/iso/0d683e63-78ec-463f-acf8-0f289efe0e4b/iso-22403-2020 #### **COPYRIGHT PROTECTED DOCUMENT** © ISO 2020 All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Fax: +41 22 749 09 47 Email: copyright@iso.org Website: www.iso.org Published in Switzerland | Co | ntent | ts | Page | |------|--------------|-----------------------------|------| | Fore | word | | iv | | Intr | oductio | on | v | | 1 | Scop | pe | 1 | | 2 | Norr | mative references | 1 | | 3 | Tern | ms and definitions | 2 | | 4 | Requirements | | 2 | | | 4.1 | Test material | 2 | | | 4.2 | Reference material | 2 | | | 4.3 | Negative control | 2 | | | 4.4 | Biodegradation test methods | 3 | | | 4.5 | Requirements | 3 | | 5 | Test report | | | | Bibl | iograpł | hy | 5 | ### iTeh Standards (https://standards.iteh.ai) Document Preview ISO 22403:2020 #### **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives). Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents). Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement. For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html. This document was prepared by Technical Committee ISO/TC 61, *Plastics*, Subcommittee SC 14, *Environmental aspects*. Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html. #### Introduction Biodegradation (i.e. biodegradation level and biodegradation rate) of a plastic product in any given environment is basically the result of three conditions: - a) the intrinsic (i.e. potential) biodegradability of the material; - b) the available surface and the shape of the product; - c) the environmental conditions where the product is located. A material's intrinsic biodegradability provides that its chemical structure is susceptible to enzymatic attack so that enzymes can cleave its chemical bonds. Under aerobic conditions (in the presence of O_2) the ultimate biodegradation of a material only leads to the formation of CO_2 , H_2O , mineral salts and biomass. Biodegradation of plastic materials is generally a bio-erosion process happening at the interface between the solid phase and the liquid phase where microbes live. It is a heterogeneous reaction. It is the surface rather than the concentration that controls the biodegradation rate. Thus, the higher the available surface the higher the biodegradation rate. Environmental conditions determine the biodegradation rate as well. Temperature, nutrient availability, pH and the existing microbial population affect the biodegradation rate. Biodegradation can be slowed or even stopped if environmental conditions are not favourable, even if the material is intrinsically and ultimately biodegradable. This document covers condition a) mentioned above. The fate of plastics in the environment is considered important information. The contamination of seas with plastic waste is a relevant problem that should be controlled not least by means of leakage prevention measures such as mandatory collection of plastic items used in marine environments and environmental education. However, in some cases, the dispersal of plastic (waste) is almost unavoidable. For example, plastics are used to make fishing gears and products for fish, mussels, and oysters farming which are prone to be left or lost in the sea. In these cases, the possibility of using products made with biodegradable plastics might be contributing to reducing the risk linked with the dispersion of solid waste. In order to carry out a proper product design and in order to assess impact and risk of leakage, it is important to know whether a plastic material is intrinsically biodegradable when exposed to marine inocula. # iTeh Standards (https://standards.iteh.ai) Document Preview ISO 22403:2020