INTERNATIONAL STANDARD

Third edition 2019-05

Plastics — Determination of dynamic mechanical properties —

Part 4: Tensile vibration — Non-resonance method

iTeh STPlastiques — Détermination des propriétés mécaniques dynamiques — (standards iteh ai) Partie 4: Vibration en traction — Méthode hors résonance

<u>ISO 6721-4:2019</u> https://standards.iteh.ai/catalog/standards/sist/b22baefd-4df6-4de9-8098-2548b52958ad/iso-6721-4-2019

Reference number ISO 6721-4:2019(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 6721-4:2019</u> https://standards.iteh.ai/catalog/standards/sist/b22baefd-4df6-4de9-8098-2548b52958ad/iso-6721-4-2019

COPYRIGHT PROTECTED DOCUMENT

© ISO 2019

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Fax: +41 22 749 09 47 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Contents

Page

Foreword				
1	Scope	1		
2	Normative references 1			
3	Terms and definitions			
4	Principle1			
5	Test device 5.1 Loading assembly 5.1.1 General 5.1.2 Clamps 5.1.3 Transducers 5.2 Electronic data-processing equipment 5.3 Temperature measurement and control 5.4 Devices for measuring test specimen dimensions	2 2 2 2 2 2 2 2		
6	Test specimens 6.1 General 6.2 Shape and dimensions 6.3 Preparation	3 3		
7	Number of specimens	4		
8	Number of specimens 4 Conditioning ITeh STANDARD PREVIEW 4			
9	Procedure (standards.iteh.ai) 9.1 Test atmosphere 9.2 Measurement of specimen cross-section 9.3 Clamping the specimen cross-section 9.4 Varying the temperatures 9.5 Performing the test	4 4 4 4		
10	Expression of results	5		
	10.1Symbols10.2Calculation of the tensile storage modulus E' 10.2.1General10.2.2Avoidance of specimen resonance10.2.3Correction for transducer resonance10.2.4Correction for apparatus compliance10.2.5Application of a length correction10.3Calculation of the tensile loss factor tan $\delta_{\rm E}$ 10.4Calculation of the tensile loss modulus10.5Presentation of data as a function of temperature	5 6 6 7 7 8 8		
11	Precision	8		
12	Test report	8		
Biblio	Bibliography			

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see <u>www.iso</u> .org/iso/foreword.html. (standards.iteh.ai)

This document was prepared by Technical Committee ISO/TC 61, *Plastics*, Subcommittee SC 5, *Physical-chemical properties*.

https://standards.iteh.ai/catalog/standards/sist/b22baefd-4df6-4de9-8098-

This third edition cancels and replaces the **second edition (ISO 6721**-4:2008), which has been technically revised. The main changes compared to the previous edition are as follows:

- the document has been revised editorially;
- normative references have been changed to undated.

A list of all parts in the ISO 6721 series can be found on the ISO website.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at <u>www.iso.org/members.html</u>.

Plastics — Determination of dynamic mechanical properties —

Part 4: **Tensile vibration — Non-resonance method**

1 Scope

This document describes a forced, non-resonance method for determining the components of the tensile complex modulus E^* of polymers at frequencies typically in the range 0,01 Hz to 100 Hz.

NOTE Higher frequency measurements can be made, but significant errors in the dynamic properties measured are likely to result (see <u>10.2.2</u> and <u>10.2.3</u>).

The method is suitable for measuring dynamic storage moduli in the range 0,01 GPa to 5 GPa. Although materials with moduli outside this range can be studied, alternative modes of deformation are intended to be used for higher accuracy [i.e. a shear mode for G' < 0,01 GPa (see ISO 6721-6) and a flexural mode for E' > 5 GPa (see ISO 6721-3 or ISO 6721-5)].

This method is particularly suited to the measurement of loss factors and can therefore be conveniently used to study the variation of dynamic properties with temperature and frequency through most of the glass-rubber relaxation region (see ISO 6721-1). The availability of data determined over wide ranges of both frequency and temperature enables master plots to be derived, using frequency-temperature shift procedures, which display dynamic properties over an extended frequency range at different temperatures. https://standards.iteh.ai/catalog/standards/sist/b22baefd-4df6-4de9-8098-

2548b52958ad/iso-6721-4-2019

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 6721-1, Plastics — Determination of dynamic mechanical properties — Part 1: General principles

3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 6721-1 apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at <u>https://www.iso.org/obp</u>
- IEC Electropedia: available at <u>http://www.electropedia.org/</u>

4 Principle

The specimen is subjected to a sinusoidal tensile force or deformation at a frequency significantly below the fundamental resonance frequency for the clamped/free longitudinal mode (see 10.2.2). The amplitudes of the force and displacement cycles applied to the specimen and the phase angle between these cycles are measured. The storage and loss factor are calculated using formulae given in <u>Clause 10</u>.

5 Test device

5.1 Loading assembly

5.1.1 General

The requirements on the apparatus are that it shall permit measurements of the amplitudes of, and the phase angle between, the force and displacement cycles for a specimen subjected to a sinusoidal tensile force or deformation. Various designs of apparatus are possible: a suitable version is shown schematically in Figure 1. A sinusoidal force is generated by the vibrator V and applied to one end of the specimen S by means of the clamp C_1 . The amplitude and frequency of the vibrator table displacement are variable and monitored by the transducer D. The member between V and C_1 shall be much stiffer than the specimen and shall have a low thermal conductance if the specimen is to be enclosed in a temperature-controlled cabinet.

While each member of the load assembly may have a much higher stiffness than the specimen, the presence of clamped or bolted connections can significantly increase the apparatus compliance. It may then be necessary to apply a compliance correction as described in <u>10.2.4</u>.

At the other end of the specimen, a second clamp C_2 is connected to a force transducer F which is supported by a rigid frame. The member between C_2 and F shall also have sufficient stiffness and low thermal conductance.

Alternatively, the force can also be calculated from the current supplied to the vibrator.

iTeh STANDARD PREVIEW

5.1.2 Clamps

(standards.iteh.ai)

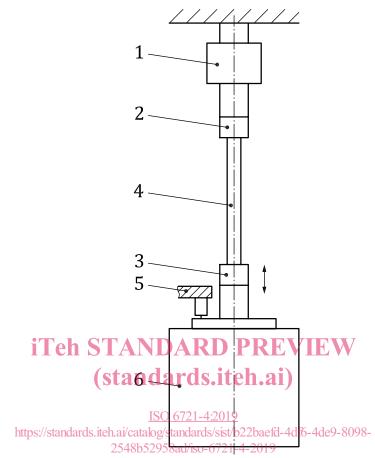
The clamps shall be capable of gripping the test specimen with sufficient force to prevent the specimen from slipping during the tensile deformation and maintaining the force at low temperatures. Any misalignment of the clamps with respect to the force transducer will produce a lateral component of the force applied to the transducer during loading of the specimen. The alignment of the loading assembly and test specimen shall be such that any lateral component recorded by the transducer is less than 1 % of the applied tensile force. A clamp design with self-aligning faces is recommended since this will maintain alignment of the specimen axis with the axis of the load assembly independently of specimen thickness.

The derivation of a length correction (see <u>10.2.5</u>) requires measurements of specimen stiffness for different values of the specimen length as defined by the clamp separation. These may be made on a single specimen if one of the clamps has a hole in the centre of its base through which the specimen may pass as the clamp separation is reduced.

5.1.3 Transducers

The term transducer in this document refers to any device capable of measuring the applied force or displacement, or the ratio of these quantities, as a function of time. The calibrations of the transducers shall be traceable to national standards for the measurement of force and length. The calibrations shall be accurate to ± 2 % of the minimum force and displacement cycle amplitudes applied to the specimen for the purpose of determining dynamic properties.

5.2 Electronic data-processing equipment


Data-processing equipment shall be capable of recording the force and displacement cycle amplitudes to an accuracy of ± 1 %, the phase angle between the force and displacement cycles to an accuracy of $\pm 0,1^{\circ}$ and the frequency to an accuracy of ± 10 %.

5.3 Temperature measurement and control

According to ISO 6721-1.

5.4 Devices for measuring test specimen dimensions

According to ISO 6721-1.

Key

- 1 force transducer F
- 2 clamp C₂
- 3 clamp C₁
- 4 test specimen S
- 5 displacement transducer D
- 6 vibrator V

Figure 1 — Schematic diagram of a suitable loading assembly for determining dynamic moduli by a tensile forced non-resonance method

6 Test specimens

6.1 General

According to ISO 6721-1.

6.2 Shape and dimensions

Test specimens of rectangular cross-section are recommended to facilitate load introduction. The width and thickness shall not vary along the specimen length by more than 3 % of the mean value. It is also recommended that the length of the specimen between the clamps be longer than six times

the specimen width in order to make the constraint by the clamps to free lateral contraction of the specimen negligible.

Where high accuracy of results is requested, a specimen length is recommended which will permit a clamp separation of about 50 mm to 100 mm or more in order to achieve adequate accuracy in the determination of the dynamic tensile strain.

Cross-sectional dimensions are not critical. For test conditions under which the polymer exhibits glassy behaviour, the cross-sectional area shall be selected sufficiently small so that the vibrator is able to generate tensile displacements that may be measured with adequate accuracy. Alternatively, when the polymer exhibits rubbery behaviour, a larger cross-sectional area may be necessary to achieve sufficient accuracy in the measurement of force.

NOTE A variation in dynamic properties can be observed between specimens of different thickness prepared by injection moulding owing to differences which can be present in the structure of the polymer in each specimen.

6.3 Preparation

According to ISO 6721-1.

7 Number of specimens

According to ISO 6721-1.

8 Conditioning

According to ISO 6721-1.

<u>ISO 6721-4:2019</u> https://standards.iteh.ai/catalog/standards/sist/b22baefd-4df6-4de9-8098-2548b52958ad/iso-6721-4-2019

iTeh STANDARD PREVIEW

(standards.iteh.ai)

9 Procedure

9.1 Test atmosphere

According to ISO 6721-1.

9.2 Measurement of specimen cross-section

According to ISO 6721-1.

9.3 Clamping the specimen

Mount the specimen between the clamps using a clamping force that is sufficient to prevent slip under all test conditions. If measurements are observed to depend upon clamp pressure, then a constant pressure should preferably be used for all measurements, especially when applying a length correction (see 10.2.5).

NOTE If measurements are observed to depend upon clamp pressure then the clamped area of the specimen is probably too small. A larger clamp face or a wider specimen can eliminate this problem. For measurements with a sub-ambient starting temperature, it can help to fix the sample at room temperature just loosely and tighten it in the cold.

9.4 Varying the temperature

According to ISO 6721-1.

9.5 Performing the test

A static tensile force shall be applied to the specimen that is sufficient to prevent buckling under the decreasing part of the superimposed dynamic load. A dynamic force shall then be applied which yields force and displacement signal amplitudes which can be measured by the transducers to the accuracy specified in <u>5.1.3</u>.

If the tensile strain exceeds the limit for linear behaviour, then the derived dynamic properties will depend on the magnitude of the applied strain. This limit varies with the composition of the polymer and the temperature and is typically in the region of 0,2 % for glassy plastics. The dynamic strain range for linear behaviour can be explored by varying the dynamic displacement amplitude at a constant frequency and recording any change in dynamic modulus with strain amplitude. A low frequency should be used for this purpose to minimize any temperature increase caused by mechanical loss. However, it should be noted that, because of the non-uniform strain in the specimen in this test, the onset of nonlinear behaviour will be less apparent than in tests where the strain distribution is uniform. If nonlinear behaviour is detected in the strain range of interest, the dynamic strain limit should be recorded in the test report.

The amplitudes of, the phase difference between and the frequency of the force and displacement signals and the temperature of the test shall be recorded. Where measurements are to be made over ranges of frequency and temperature, it is recommended that the lowest temperature be selected first and measurements be made with increasing frequency, keeping the temperature constant. The frequency range is then repeated at the next higher temperature (see ISO 6721-1).

For those test conditions under which the polymer exhibits medium or high loss (for example in the glass-rubber transition region), the energy dissipated by the polymer may raise its temperature sufficiently to give a significant change in dynamic properties. Any temperature rise will increase rapidly with increasing strain amplitude and frequency. If the data-processing electronics is capable of analysing the transducer outputs within the first few cycles, then the influence of any temperature rise will then change with time as the specimen temperature continues to rise, and such observations will indicate the need to exercise some caution in the presentation and interpretation of results.

2548b52958ad/iso-6721-4-2019

10 Expression of results

10.1 Symbols

La	length of the specimen between clamps, in metres
1	length correction term, in metres
b	specimen width, in metres
h	specimen thickness, in metres
f	measurement frequency, in hertz
SA	measured amplitude of the dynamic displacement, in metres
$\Delta F_{\rm A}$	measured amplitude of the dynamic force, in newtons
$\delta_{ m Ea}$, $\delta_{ m E}$	measured phase difference and corrected phase difference, respectively, between the force and displacement cycles, in degrees
k _a , k	measured magnitude and corrected magnitude, respectively, of the complex stiffness of the specimen, in newtons per metre
<i>E'</i> a, <i>E'</i>	apparent tensile storage modulus and corrected tensile storage modulus, respectively, in pascals