TECHNICAL SPECIFICATION

ISO/TS 22451

First edition 2021-05

Recycling of rare earth elements — Methods for the measurement of rare earth elements in industrial waste and end-of-life products

Recyclage des éléments des terres rares — Méthodes pour le mesurage des éléments des terres rares dans les déchets industriels et

iTeh STles produits en fin devie EVIEW

(standards.iteh.ai)

ISO/TS 22451:2021 https://standards.iteh.ai/catalog/standards/sist/5b10fecb-cdbd-4253-ab1a-51a74963f180/iso-ts-22451-2021

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/TS 22451:2021 https://standards.iteh.ai/catalog/standards/sist/5b10fecb-cdbd-4253-ab1a-51a74963f180/iso-ts-22451-2021

COPYRIGHT PROTECTED DOCUMENT

© ISO 2021

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Contents						
Foreword						
Intro	oductio	on	v			
1		De				
_	-					
2		Normative references				
3	Terms, definitions and abbreviated terms					
	_	3.1 Terms and definitions				
	3.2	1				
4	Sam	pling	2			
	4.1	Industrial waste				
5		4.1.1 Processing waste				
	4.0	4.1.2 Scrap				
	4.2	End-of-life products				
		4.2.1 Magnets 4.2.2 NiMH batteries				
		4.2.3 Phosphors				
5	Sele	ction of measurement methods				
_		surement methods				
O						
	0.1	X-ray fluorescence spectrometry (XRF) 6.1.1 General STANDARD PREVIEW	3			
		6.1.2 Sample preparation	3			
		6.1.2 Sample preparation 6.1.3 Calibration Standards.iteh.ai)	4			
		6.1.4 Analysis and calculation				
	6.2	ICP-OES <u>ISO/TS-22451-2021</u>				
		6.2.1 httpsGeneralds:itch:ai/catalog/standards/sist/5b10feeb-edbd-4253-ab1a-	5			
		6.2.2 Sample preparation 180/180-18-22451-2021				
		6.2.3 Calibration				
	6.3	6.2.4 Analysis and calculation				
	0.3	ICP-MS				
		6.3.1 General				
		6.3.3 Calibration				
		6.3.4 Analysis and calculation				
Ann	ex A (in	formative) Example measurement report				
	iogranl	· · · · · · · · · · · · · · · · · · ·	g			

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html. (standards.iteh.ai)

This document was prepared by Technical Committee ISO/TC 298, *Rare earth*.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.isotorg/members.html.

Introduction

With technical advancement, rare earth elements (REEs) are increasingly important due to their importance in a number of applications, including green technologies. However, there are high supply risks arising from the dependence on a single source of extraction. Recycling and systemic management of rare earth elements are key issues for solving the waste and supply risks of REEs.

In order to efficiently recycle and systemically manage rare earth elements, a standard measurement method of REEs in industrial wastes and end-of-life cycled products is needed. Industrial wastes and end-of-life products can be found in solid, solid-liquid mixture and liquid forms. For example, machining waste contains chips and flakes with coolant oils, greases and numerous other forms of aqueous and non-aqueous contaminants. Similarly, waste liquid slurries contain REEs, as in LEDs, and batteries contain numerous acids, bases etc. Furthermore, in order to verify the information provided by the producer about REEs in the waste, standardized measurement procedure is necessary.

There are several scientific methods for quantitatively measure REEs in matters, such as X-ray fluorescence (XRF), inductively coupled plasma mass spectroscopy (ICP-MS), inductively coupled plasma optical emission spectroscopy (ICP-OES) and glow discharge mass spectrometry (GD-MS). However, these different characterization techniques often offer dissimilar measurement results depending on the composition and physical state of the sample under observation. This is another reason to establish standard measurement methods.

This document provides a brief overview and several measurement methods for REEs in industrial wastes and end-of-life products. Sample preparation methods are also provided. The accurate measurement of rare earth content (e.g. in ppm range) is still under active research and is not covered by this document. However, this document does provide measurement methods for identifying the presence and approximate content of rare earth elements.

This document is designed to be used with ISO 22450

https://standards.iteh.ai/catalog/standards/sist/5b10fecb-cdbd-4253-ab1a-51a74963f180/iso-ts-22451-2021

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/TS 22451:2021

https://standards.iteh.ai/catalog/standards/sist/5b10fecb-cdbd-4253-ab1a-51a74963f180/iso-ts-22451-2021

Recycling of rare earth elements — Methods for the measurement of rare earth elements in industrial waste and end-of-life products

1 Scope

This document provides measurement methods for quantifying rare earth elements (REEs) in industrial wastes and end-of-life products in solid, solid-liquid mixture or liquid forms. It provides an overview of sample preparation and measurement of REEs in industrial waste and end-of-life products.

WARNING — The use of this document can involve hazardous materials, operations and equipment. This document does not address any safety problems associated with its use. It is the responsibility of the user of this document to establish appropriate safety and health practices.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 22444-2, Rare earth — Vocabulary — Part 2: Metals and their alloys (Standards-Item-al)

ISO 22450, Recycling of rare earth elements — Requirements for providing information on industrial waste and end-of-life products ISO/TS 22451:2021

https://standards.iteh.ai/catalog/standards/sist/5b10fecb-cdbd-4253-ab1a-

Terms, definitions and abbreviated terms

3.1 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 22444-2 and ISO 22450 apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at https://www.iso.org/obp
- IEC Electropedia: available at http://www.electropedia.org/

3.2 Abbreviated terms

REE rare earth element

TREE total rare earth element content

ppm parts per million

XRF X-ray fluorescence spectrometry

EDXRF energy dispersive X-ray fluorescence spectrometry

ISO/TS 22451:2021(E)

WDXRF wavelength dispersive X-ray fluorescence spectrometry

ICP-MS inductively coupled plasma mass spectrometry

ICP-OES inductively coupled plasma optical emission spectrometry

[also referred to as inductively coupled plasma atomic emission spectroscopy (ICP-AES)]

4 Sampling

4.1 Industrial waste

4.1.1 Processing waste

Processing waste can be of solid or liquid type. In the case of solid waste, sampling can be done directly without any special pre-treatment. In the case of liquid waste, it should be ensured that the sample is safe to handle and does not contain any hazardous components. For that purpose, the pH of the waste should be checked and neutralized. After the safety of the liquid waste is established, it should be prepared for analysis. Because processing waste can be of numerous types, a single sampling procedure is not recommended in this document. However, regardless of the sampling procedure used, samples should be taken in such a way that they represent the total package. The samples should be taken from five random points of a package to accurately represent the actual composition.

4.1.2 Scrap iTeh STANDARD PREVIEW

Sampling of scrap containing REE can be directly done without any special pre-treatment. However, demagnetization should precede the sampling stage in the case of magnetic scrap. Due to the large variety of scraps, proposing a sampling procedure for each situation is beyond the scope of this document. However, samples should be taken from five random points of a package to accurately represent the actual composition.

51a74963f180/iso-ts-22451-2021

4.2 End-of-life products

4.2.1 Magnets

For the purpose of measurement, magnets containing end-of-life products should be dismantled and magnets should be identified and separated. The recovered magnets should be demagnetized for further processing. Both XRF and ICP techniques can be used for measurement of REEs inside magnets. If the XRF technique is used, the magnet should be simply used as is for measurement. If the ICP measurement is used, the magnet should be crushed using a hammer mill to obtain a sample for digestion.

4.2.2 NiMH batteries

To prepare NiMH batteries for measurement, manual disassembly of battery components should be carried out. In a NiMH battery, anode metal powder contains the majority of REEs. The anode metal powder should be separated and prepared for analysis. Both XRF and ICP techniques can be used for measurement of REEs inside NiMH batteries.

4.2.3 Phosphors

To prepare phosphor for measurement, manual disassembly of its components should be carried out to separate secondary materials such as aluminium caps, electrodes and mercury. REEs containing lamps should be prepared according to the analysis technique. Both XRF and ICP techniques can be used for measurement of REEs inside phosphors. If the XRF technique is used, the phosphor powder should be carefully extracted from the lamp and used for measurement. For ICP measurement, the lamp can be simply broken down.

5 Selection of measurement methods

Any of the given measurement methods can be used for quantification of REE waste with the mutual understanding of the buyer and the waste handler, as defined in ISO 22453.¹⁾ Table 1 summarizes the REEs which can be detected with the measurement techniques described in this document and also give remarks on which technique is suitable for which type of industrial waste or end-of-life product.

Measurement method	Detection limit	Elements that can be detected	Remarks
XRF	~100 ppm	all elements	due to line overlaps, the accuracy of the measurement can be compromised
ICP-OES	~1 to 100 ppm	all elements	accurate measurement technique
ICP-MS	~1 to 100 ppm	all elements	accurate measurement technique

Table 1 — Selection of measurement methods

6 Measurement methods

There are several scientific methods which can be used for quantitatively measure REEs in matter, such as XRF, ICP-OES and ICP-MS. These measurement techniques which are applicable to REE quantification in industrial waste and end-of-life products are described in $\underline{6.1}$ through $\underline{6.3}$ and follow the general steps in Figure 1.

Figure 1 — General steps for measuring of REE content in industrial wastes and rendsof-life products

https://standards.iteh.ai/catalog/standards/sist/5b10fecb-cdbd-4253-ab1a-51a74963f180/iso-ts-22451-2021

6.1 X-ray fluorescence spectrometry (XRF)

6.1.1 General

XRF is a quantitative method that measures the fluorescent X-rays that are produced when a material is irradiated with X-rays to identify the elements contained in the material. Since it is simple to operate and can measure almost all metallic elements, it is widely used for quantitative analysis of materials. In general, this method can identify the elemental composition at percentage levels. The main advantage of XRF measurement is that it can measure all materials such as metals, ceramics and polymers without any pre-treatment process, even in solution or in powder state. The use of WDXRF, which is more accurate than EDXRF for measuring REEs, is recommended.

6.1.2 Sample preparation

6.1.2.1 General

The samples can be prepared using several procedures. Selecting the right procedure is vital for accurate measurement. Homogeneity of sample is an important factor for XRF and, therefore, the sample should be homogenized before measurement. Non-destructive measurement can be carried out when the waste collected is of homogeneous nature (e.g. end-of-life REE magnets). However, if the waste is in the form of a mixture, measurement is performed after crushing and homogenization.

¹⁾ Under preparation. Stage at the time of publication: ISO/FDIS 22453:2021.

6.1.2.2 Pressed pellet sample

For a pelletized specimen, 5 g of powder should be weighed and filled inside a cylindrical die. Afterwards the powder should be pressed using a secondary die inside a press machine. The pellet obtained afterwards should be used for analysis. The obtained pellet should have the structural integrity to withstand the process of measurement without deteriorating. Furthermore, care is needed at the time of applying pressure to avoid cracking due to trapped air. This can be achieved by stepwise application of pressure.

6.1.2.3 Fused beads

For the preparation of fused beads, a mixture between flux (lithium borate ($\text{Li}_2\text{B}_4\text{O}_7$)) and the sample should be prepared. The sample to flux ratio can be between 1:5 and 1:10. Afterwards, the mixture should be placed in an appropriate crucible. The crucible should be heated to 1 200 °C for 30 minutes in a fusion furnace to obtain a melt. Afterwards, the heating should be continued at 1 200 °C for another 30 minutes along with agitation in order obtain homogeneity. Finally, the crucible should be cooled to obtain fused beads for analysis.

6.1.2.4 Bulk sample

In the case of samples to be tested in bulk form, the surface of the sample should be prepared to remove any roughness on the surface. Grinding should be carried out on an abrasive belt or with grinding paper of 240 grit size. Afterwards, the surface should be cleaned using an appropriate solvent in order to remove any grinding media or foreign substance.

For the measurement of liquid samples, it is recommended to use ICP-OES or ICP-MS because XRF is not commonly used for liquid state measurement.ndards.iteh.ai)

6.1.3 Calibration

ISO/TS 22451:2021

https://standards.iteh.ai/catalog/standards/sist/5b10fecb-cdbd-4253-ab1a-51a74963f180/iso-ts-22451-2021

6.1.3.1 General

Calibration is a sensitive process for XRF measurements and should be carried out following the steps in 6.1.3.2 through 6.1.3.4.

6.1.3.2 Drift correction

Drift correction should be carried out in order to calibrate instrumental drift. A drift monitor containing REE should be used before conducting each analysis.

6.1.3.3 Matrix correction

In order to perform matrix correction, standard binary samples of each minor element with the matrix element should be made. The analysis should be run for each sample. The calibration for each analysis should be made in order to get a total concentration of $100\,\%$ for the minor and matrix elements. The results should be updated for further analysis.

6.1.3.4 Standard calibration using CRM

The measurement of certified reference materials (CRM) should be carried out to generate calibration curves for each element. The reference materials should cover the mass fraction ranges of REEs. Use at least three reference materials for each element. After plotting the results, regression analysis should be done to acquire analytical curve for each element.

6.1.4 Analysis and calculation

After calibration, analysis of the REE waste should be carried out. Samples should be extracted from at least five or more points from a package to obtain reliable value. It should be noted that the preparation