

SLOVENSKI STANDARD oSIST prEN IEC 55016-1-4:2024

01-marec-2024

Specifikacija merilnih naprav in metod za merjenje radiofrekvenčnih motenj in odpornosti - 1-4. del: Merilne naprave za merjenje radiofrekvenčnih motenj in odpornosti - Antene in preskuševališča za meritve sevanih motenj

Specification for radio disturbance and immunity measuring apparatus and methods -Part 1-4: Radio disturbance and immunity measuring apparatus - Antennas and test sites for radiated disturbance measurements

Anforderungen an Geräte und Einrichtungen sowie Festlegung der Verfahren zur Messung der hochfrequenten Störaussendung (Funkstörungen) und Störfestigkeit – Teil 1-4: Geräte und Einrichtungen zur Messung der hochfrequenten Störaussendung (Funkstörungen) und Störfestigkeit – Antennen und Messplätze für Messungen der gestrahlten Störaussendung

Spécifications des méthodes et des appareils de mesure des perturbations radioélectriques et de l'immunité aux perturbations radioélectriques - Partie 1-4: Appareils de mesure des perturbations radioélectriques et de l'immunité aux perturbations radioélectriques - Antennes et emplacements d'essai pour les mesures des perturbations rayonnées

Ta slovenski standard je istoveten z: prEN IEC 55016-1-4:2024

ICS:

17.240Merjenje sevanja33.100.20Imunost

Radiation measurements Immunity

oSIST prEN IEC 55016-1-4:2024

en

oSIST prEN IEC 55016-1-4:2024

iTeh Standards (https://standards.iteh.ai) Document Preview

<u>oSIST prEN IEC 55016-1-4:2024</u> https://standards.iteh.ai/catalog/standards/sist/7fed22eb-7f4a-48e5-a016-8c7b0c2ae468/osist-pren-iec-55016-1-4-2024

CIS/A/1416/CDV

COMMITTEE DRAFT FOR VOTE (CDV)

PROJECT NUMBER:

CISPR 16-1-4 ED5

DATE OF CIRCULATION:

2024-01-12

CLOSING DATE FOR VOTING: 2024-04-05

SUPERSEDES DOCUMENTS:

CIS/A/1369/CD, CIS/A/1380/CC

IEC CIS/A : RADIO-INTERFERENCE MEASUREMENTS AND STA	TISTICAL METHODS
SECRETARIAT:	SECRETARY:
United States of America	Mr Nicholas Abbondante
OF INTEREST TO THE FOLLOWING COMMITTEES:	PROPOSED HORIZONTAL STANDARD:
CIS/B,CIS/D,CIS/F,CIS/H,CIS/I	
	Other TC/SCs are requested to indicate their interest, if any, in this CDV to the secretary.
FUNCTIONS CONCERNED.	
	QUALITY ASSURANCE SAFETY
EMC ENVIRONMENT Submitted for CENELEC parallel voting	QUALITY ASSURANCE SAFETY
Image: Submitted For CENELEC parallel voting Attention IEC-CENELEC parallel voting	QUALITY ASSURANCE SAFETY
EMC ENVIRONMENT SUBMITTED FOR CENELEC PARALLEL VOTING Attention IEC-CENELEC parallel voting The attention of IEC National Committees, members of CENELEC, is drawn to the fact that this Committee Draft for Vote (CDV) is submitted for parallel voting.	QUALITY ASSURANCE SAFETY
Image: Submitted For CENELEC PARALLEL VOTING Attention IEC-CENELEC parallel voting The attention of IEC National Committees, members of CENELEC, is drawn to the fact that this Committee Draft for Vote (CDV) is submitted for parallel voting. The CENELEC members are invited to vote through the CENELEC online voting system.	Quality assurance Safety ONOT SUBMITTED FOR CENELEC PARALLEL VOTING Andards dards.iteh.ai)

This document is still under study and subject to change. It should not be used for reference purposes.

Recipients of this document are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.

Recipients of this document are invited to submit, with their comments, notification of any relevant "In Some Countries" clauses to be included should this proposal proceed. Recipients are reminded that the CDV stage is the final stage for submitting ISC clauses. (SEE AC/22/2007 OR NEW GUIDANCE DOC).

TITLE:

Specification for radio disturbance and immunity measuring apparatus and methods - Part 1-4: Radio disturbance and immunity measuring apparatus - Antennas and test sites for radiated disturbance measurements

PROPOSED STABILITY DATE: 2024

NOTE FROM TC/SC OFFICERS:

This CDV constitutes a new edition of CISPR 16-1-4, Ed5.0, since there have already been two amendments, however the revision consists mainly of text concerning the VHF-LISN.

Copyright © 2023 International Electrotechnical Commission, IEC. All rights reserved. It is permitted to download this electronic file, to make a copy and to print out the content for the sole purpose of preparing National Committee positions. You may not copy or "mirror" the file or printed version of the document, or any part of it, for any other purpose without permission in writing from IEC.

Introduction to the CDV (not to be included in final publication)

This is the CDV following the 3rd CD CISPR/A/1369/CD, circulated on 29 April 2022, taking into account the comments in CISPR/A/1380/CC circulated on 23 September 2022. This document is to add the VHF-LISN characteristics to be used for EUT AC mains cable termination in radiated emission measurements. As this project would be the third amendment of Edition 4, and IEC rules allow only two amendments for each edition of a publication, then a new edition of CISPR 16-1-4 is required. Therefore this CDV is the CISPR 16-1-4 Ed. 5.0 in which general editorial changes, not specific to cable terminations, have been added.

Deletions and additions since the CD are shown with red font and red strikeout text for changes following the CD and CC, while blue font and blue strikeout text are for changes from the CISPR/A Editing Committee.

15 Background:

1

2

3

4

National Committees please note: The addition of VHF-LISN for terminating the AC mains cable
 of EUT is intended to improve the reproducibility of radiated emission measurement in the
 frequency range from 30 MHz to 300 MHz.

19	
20	(https: //standard s.iteh.ai)
21 22 23	

<u>oSIST prEN IEC 55016-1-4:2024</u>

1ttps://standards.iteh.ai/catalog/standards/sist/7fed22eb-7f4a-48e5-a016-8c7b0c2ae468/osist-pren-iec-55016-1-4-2024

24

- 3 -

CIS/A/1416/CDV

CONTENTS

5		
26	Introduction to the CDV (not to be included in final publication)	2
27	FOREWORD	11
28	1 Scope	13
29	2 Normative references	13
0	3 Terms, definitions and abbreviated terms	14
1	3.1 Terms and definitions	14
.2	3.1.5 15	
3	3.1.22 18	
34	3.2 Abbreviated terms	
5	4 Antennas for measurement of radiated radio disturbance	21
6	4.1 General	
7	4.2 Physical parameter (measurand) for radiated disturbance measuren	nents21
8	4.3 Antennas for the frequency range 9 kHz to 150 kHz	
9	4.3.1 General	21
0	4.3.2 Magnetic field antenna	22
1	4.3.3 Shielding of loop antenna	23
2	4.4 Antennas for the frequency range 150 kHz to 30 MHz	23
3	4.4.1 Electric field antenna	23
4	4.4.2 Magnetic field antenna	24
5	4.4.3 Balance and electric field discrimination of antennas	24
6	4.5 Antennas for the frequency range 30 MHz to 1 000 MHz	24
7	4.5.1 General	24
3	4.5.2 Low-uncertainty antenna for use if there is an alleged non-com to the electric disturbance field strength limit	pliance 24
C	4.5.3 Antenna characteristics nrEN.IEC.55016-1-4.2024	24
/st	tandar 4.5.4 al/ Balance of antenna. 7fed.22eb-7f4a-48e5-a016-8e7b0c2ae468/	osist-pren-iec-26
2	4.5.5 Cross-polar response of antenna	
3	4.6 Antennas for the frequency range 1 GHz to 18 GHz	29
ł	4.6.1 General	29
5	4.6.2 Receive antenna	29
6	4.7 Special antenna arrangements – large-loop antenna system	31
7 3	5 Test sites for measurement of radio disturbance field strength for the freq range of 9 kHz to 30 MHz	luency 32
9	5.1 General	
0	5.2 Radio-frequency ambient environment of a test site	
1	5.3 Measurement distance and test volume	32
2	5.4 Set-up table and antenna positioner	
3	5.5 Validation procedure of test site	
1	5.5.1 General	
5	5.5.2 Normalized site insertion loss (NSIL)	
6	5.5.3 Reference site method	
7	5.5.4 Acceptance criterion	
8 9	6 Test sites for measurement of radio disturbance field strength for the freq range of 30 MHz to 1 000 MHz	ןuency 38
70	6.1 General	25

	IEC CDV CIS © IEC 2024	SPR 16-1-4/Ed5 – 4 – C	CIS/A/1416/CDV
71	6.2 OA	ATS	
72	6.2.1	General	
73	6.2.2	Weather-protection enclosure	
74	6.2.3	Obstruction-free area	
75	6.2.4	Radio-frequency ambient environment of a test site	40
76	6.2.5	Ground plane	41
77	6.3 Su	itability of other test sites	41
78	6.3.1	Other ground-plane test sites	41
79	6.3.2	Test sites without ground plane (FAR)	41
80	6.4 Te	st site validations	42
81	6.4.1	General	42
82	6.4.2	Overview of test site validations	42
83	6.5 Ba	sic parameters of the NSA method for OATS and SAC	43
84	6.5.1	General equation and table of theoretical NSA values	43
85	6.5.2	Antenna calibration	47
86	6.6 Re	ference site method for OATS and SAC	47
87	6.6.1	General	47
88	6.6.2	Antennas not permitted for RSM measurements	48
89 90	6.6.3	Determination of the antenna pair reference site attenuation on REFTS	a 48
91 92	6.6.4	Determination of the antenna pair reference site attenuation usin averaging technique on a large OATS	ng an 49
93	6.7 Va	lidation of an OATS by the NSA method	53
94	6.7.1	Discrete frequency method	53
95	6.7.2	Swept frequency method	54
96	6.8 Va	lidation of a weather-protection-enclosed OATS or a SAC	54
97	6.9 Po	ssible causes for exceeding site acceptability limits	58
98	6.10 Sit	e validation for FAR sites	
99	6.10.1	General	58
100	6.10.2	RSM for FAR sites	
101	6.10.3	NSA method for FAR sites	64
102	6.10.4	Site validation criteria for FAR sites	66
103	6.11 Ev	aluation of set-up table and antenna tower	66
104	6.11.1	General	66
105	6.11.2	Evaluation procedure for set-up table influences	67
106 107	7 Test site range 1	es for measurement of radio disturbance field strength for the frequ GHz to 18 GHz	iency 69
108	7.1 Ge	eneral	69
109	7.2 Re	eference test site	
110	7.3 Te	st site validation	69
111	7.3.1	General	69
112	7.3.2	Acceptance criterion for site validation	71
113	7.4 An	itenna requirements for S_{VSWR} standard test procedure	71
114	7 4 1	General	71
115	742	Transmit antenna	
116	7 4 3	Antennas and test equipment for the Sucoup reciprocal test pro	cedure 75
447	7 E D-	value and tool open on the by SWR rooprood test pro	75
117	1.0 KE	Constant Constant of Site Validation testing	
110	1.3.1	General	

	IEC CDV © IEC 20	CISPR 16-1-4/Ed5 24	- 5 -	CIS/A/1416/CDV
119	7.5.2	2 Descriptions of $S_{VS'}$	WR measurement position	s in a horizontal plane
120		(Figure 28)	· · · · · · · · · · · · · · · · · · ·	
121	7.5.3	Descriptions of S _{VS}	WR additional measureme	nt positions (Figure 29)77
122	7.5.4	Summary of SVSWR	measurement positions	77
123	7.6	S _{VSWR} site validation -	standard test procedure	80
124	7.7	S_{VSWP} site validation –	reciprocal test procedure ι	using an isotropic field
125		probe		
126	7.8	SVSWR conditional meas	surement position requirem	nents82
127	7.9	S_{VSWR} site validation te	st report	
128	7.10	Limitations of the Syswi	, ⇒ site validation method	
120	7 11	Alternative test sites	\	84
130	8 Com	mon-mode absorption dev	vices	
131	8 1	General		84
132	8.2	CMAD S-parameter measure	surements	84
133	8.3	CMAD test iig		
134	8.4	Measurement method us	ing the TRL calibration	
135	8.5	Specification of ferrite cla	amp-type CMAD	
136	8.6	CMAD performance (deg	radation) check using spe	ctrum analyzer and
137		tracking generator		90
138	9 Reve	prberating chamber for tota	al radiated power measure	ment91
139	10 TEM	waveguides for radiated of	disturbance measurements	91
140	11 VHF	-LISN		
141	11.1	General	://standards.	interna 10
142	11.2	Balanced VHF-LISN		
143	11.3	Unbalanced VHF-LISN	cument Prev	
144	11.4	Measurement of the VHF	-LISN impedance	95
145	11.4	1 General	IST prEN IEC 55016-1-4:.	2024
tp\$46/s	tandards.ite	2 Impedance measure	ment adaptor (IMA)	807b002ae408/0sist-pren-feo-9901
147	11.4	.3 Electrical length cor		
148	۱۱.4 ۸ مممر	.4 Impedance measure	f entennes	
149				
150	A.1	General		
151	A.2	General		
152	Δ21	Calculable antenna		101
154	A 2 3	l ow-uncertainty ant	ennas	102
155	A.3	Simple dipole antennas		
156	A.3.1	I General		
157	A.3.2	2 Tuned dipole		
158	A.3.3	Shortened dipole		
159	A.4	Broadband antenna para	meters	
160	A.4.1	General		
161	A.4.2	2 Antenna type		
162	A.4.3	3 Specification of the	antenna	
163	A.4.4	Antenna calibration.		
164	A.4.	5 Antenna user inform	ation	

	IEC CDV © IEC 20	CISPR 16-1-4/Ed5 – 6 – CIS/A	A/1416/CDV
165 166	Annex B mea	(normative) Large-loop antenna system for magnetic field induced-curren surements in the frequency range of 9 kHz to 30 MHz	ıt 107
167	B.1	General	
168	B.2	Construction of an LLAS	
169	B.3	Construction of a large-loop antenna (LLA)	
170	B.4	Validation of an LLAS	112
171	B.5	Construction of the LLAS verification dipole antenna	114
172	B.6	Conversion factors	115
173	B.6.	1 General	115
174	B.6.	2 Current conversion factors for an LLAS with non-standard diameter	115
175	B.6.	3 Conversion of LLAS measured current to magnetic field strength	117
176	B.7	Examples	119
177 178	Annex C rang	(normative) Construction details for open area test sites in the frequency ge of 30 MHz to 1 000 MHz (see Clause 6)	
179	C.1	General	
180	C.2	Ground plane construction	
181	C.2.	1 Material	
182	C.2.	2 Roughness	
183	C.3	Services to EUT	121
184	C.4	Weather-protection enclosure construction	121
185	C.4.	1 Materials and fasteners	
186	C.4.	2 Internal arrangements	
187	C.4.	3 Size	
188	C.4.	4 Uniformity with time and weather	
189	C.5	Turntable and set-up table	
190	C.6	Receive antenna mast installation	
191	Annex D	(informative) Basis for the ±4 dB site acceptability criterion (see Clause 6	6) 124
192	D.1	General	
193	D.2	Error analysis	
194 ^{/st} 195	Annex E usin	(informative) Examples of uncertainty budgets for site validation of a COM g RSM with a calibrated antenna pair (see 6.6)	MTS1-iec-55016- 126
196 197	E.1	Quantities to be considered for antenna pair reference site attenuation calibration using the averaging technique	
198 199	E.2	Quantities to be considered for antenna pair reference site attenuation calibration using a REFTS	
200 201	E.3	Quantities to be considered for COMTS validation using an antenna pair reference site attenuation	128
202	Annex F	(informative) Definition of uncertainty in cross-polar response measureme	ent 129
203	F.1	General	129
204	F.2	Example uncertainty estimate	132
205	F.3	Rationale for the estimates of input quantities in Table F.1 and Table F.3	3133
206	F.4	Measurement of XPR below 100 MHz at an OATS	134
207 208	Annex G freq	(informative) Measurement uncertainties of COMTS validation results in tuency range 9 kHz to 30 MHz	the 136
209	G.1	Quantities to be considered for COMTS validation using the NSIL method	d 136
210	G.2	Quantities to be considered for COMTS validation using the RSM method	d 138
211 212	Annex H MHz	(normative) Derivation of NSIL values in the frequency range 9 kHz to 30	141
213	H.1	General	141
011	ц э	Magnetic field antenna factor	1/1

- 7 -

IEC CDV CISPR 16-1-4/Ed5

	© IEC 20	024	
215	H.3	Site insertion loss	143
216	H.4	Normalized site insertion loss	144
217	H.5	NSIL tables	148
218 219	Annex I rang	(informative) Recommendations for the design of test sites in the frequency ge 9 kHz to 30 MHz	153
220	I.1	General	153
221	1.2	Dimensions and quality of the ground plane	153
222	1.3	Obstruction free area	154
223	1.4	Resonance-free area	155
224 225	Annex J MH:	(informative) Accuracy of NSIL values in the frequency range of 9 kHz to 30	156
226	11	General	156
220	12	Cross-check of NEC with analytic formulas	150
228	.1.3	Recommended NEC versions	157
229	.1.4	Instabilities at the lower frequency end	158
230	J.5	Extrapolation methods to solve instabilities	158
231	J.6	Reducing the number of segments to solve instabilities	158
232 233	Annex K dB	(informative) Example calculation for 10 m SAC sites that do not fulfil the ± 4 criterion within 9 kHz to 30 MHz	159
234 235	Annex L frea	(normative) Calibration of the sum of magnetic field antenna factors in the guency range of 9 kHz to 30 MHz	162
236	I 1	General	162
237	L.2	Calibration procedure in Tech Strandards	162
238	L.3	Measurement uncertainties	163
239	Bibliogra	ophy (https://standards.iteh.ai)	165
240	Distrogre		
240	Figure 1	- Example of size-compliant loop antenna	22
242 243	Figure 2 ground r	– Schematic of radiation from EUT reaching an LPDA antenna directly and via reflection at a 3 m site, showing the beamwidth half-angle, φ , at the reflected	
p244 sta	ray 26	eh.ai/catalog/standards/sist/7fed22eb-7f4a-48e5-a016-8c7b0c2ae468/osist-pren-i	
245 246	Figure 3 m distan	– RX antenna E-plane radiation pattern example, with limit area shaded for 3 ice and 2 m EUT width	30
247	Figure 4	- Determination of maximum useable EUT width using half-power beamwidth	31
248	Figure 5	- Determination of maximum useable EUT height using half-power beamwidth	31
249 250	Figure 6 where d	– General arrangement of the three measurement orientations H_X , H_Y and H_Z , is the measurement distance and h is the height of the reference point.	
251	Figure 7	– Antenna positions (top view)	35
250	Figure 9	Antenna positions (3D view)	20
202	Figure 0	Tost set up for $V_{2} = -$ with power emplifier and attenuator	0د حد
253		 rest set-up for <i>v</i>_{DIRECT} with power amplifier and attenuator Obstruction free ence of a test site with a test site 	31
254	Figure 1	U – Obstruction-free area of a test site with a turntable	40
255	Figure 1	1 – Obstruction-free area with stationary EUT	40
256	Figure 1	2 – Test point locations for 3 m and 10 m test distances	49
257	Figure 1	3 – Paired test point locations for all test distances	51
258	Figure 1	4 – Example of paired test point selection for a test distance of 10 m	52
259	Figure 1	5 – Illustration of an investigation of influence of antenna mast on A_{APR}	52
260 261	Figure 1 vertical p	6 – Typical antenna positions for a weather-protected OATS or a SAC – polarization validation measurements	56

	IEC CDV CISPR 16-1-4/Ed5 - © IEC 2024	- 8 -	CIS/A/1416/CDV
262 263	Figure 17 – Typical antenna positions for a w horizontal polarization validation measurement	eather-protected OATS or a SA nts	C – 56
264 265	Figure 18 – Typical antenna positions for a w vertical polarization validation measurements	eather-protected OATS or a SA for a smaller EUT	C – 57
266 267	Figure 19 – Typical antenna positions for a w horizontal polarization validation measurement	eather-protected OATS or a SA nts for a smaller EUT	C – 57
268	Figure 20 – Measurement positions for FAR s	ite validation	60
269 270	Figure 21 – Example of one measurement po validation	sition and antenna tilt for FAR s	ite 61
271	Figure 22 – Typical quasi free-space test site	reference SA measurement set	-up63
272 273	Figure 23 – Theoretical free-space NSA as a measurement distances [see Equation (18)]	function of frequency for different	ent 66
274 275	Figure 24 – Position of the antenna relative to (top view)	o the edge above a rectangle se	t-up table 68
276	Figure 25 – Antenna position above the set-u	p table (side view)	68
277 278	Figure 26 – Transmit antenna E-plane radiation informative purposes only)	on pattern example (this examp	le is for 72
279 280	Figure 27 – Transmit antenna H-plane radiati purposes only)	on pattern (this example is for ir	nformative 74
281 282	Figure 28 – <i>S</i> _{VSWR} measurement positions in description)	n a horizontal plane (see 7.5.2 f	or 75
283	Figure $29 - S_{VSWR}$ positions (height require	ments)	77
284	Figure $30 - S_{VSWR}$ conditional measurement	t position requirements	83
285	Figure 31 – Definition of the reference planes	inside the test jig	
286	Figure 32 – The four configurations for the TF	RL calibration	
287 288	Figure 33 – Limits for the magnitude of S_{11} , 18.1 to 8.3	measured according to the prov	isions of 89
289	Figure 34 – Example of a 50 Ω adaptor const	ruction in the vertical flange of t	he jig90
290 sta	Figure 35 – Example of a matching adaptor w	vith balun or transformer	/osist-pren-iec-9101
291	Figure 36 – Example of a matching adaptor w	vith resistive matching network	91
292	Figure 37 – Example circuit diagram of a bala	anced VHF-LISN	93
293	Figure 38 – Example circuit diagram of an un	balanced VHF-LISN	95
294 295	Figure 39 – Terminal-to-reference ground imp mains port	bedances of the VHF-LISN at th	e EUT 96
296	Figure 40 – Example VHF-LISN impedance m	neasurement set-up geometry	
297	Figure 41 – Example IMA		98
298	Figure 42 – Connection between the IMA and	the VHF-LISN	
299	Figure A.1 – Short dipole antenna factors for	$R_{L} = 50 \ \Omega$	104
300	Figure B.1 – The LLAS, consisting of three m	utually perpendicular large-loop	antennas 109
301 302	Figure B.2 – An LLA containing two opposite respect to the current probe C	slits, positioned symmetrically v	vith 110
303	Figure B.3 – Construction of an LLA slit		110
304 305	Figure B.4 – Example of an LLA slit construct to obtain a rigid construction	ion using a strap of printed circ	uit board 111
306	Figure B.5 – Construction of the metal box co	ontaining the current probe	111

	IEC CDV CISPR 16-1-4/Ed5 © IEC 2024	- 9 -	CIS/A/1416/CDV
307 308	Figure B.6 – Example showing the routing capacitive coupling from the leads to the LI	of several cables from an EUT to _AS	minimize 112
309 310	Figure B.7 – The eight positions of the LLA LLA 113	S verification dipole during valida	ation of an
311	Figure B.8 – Reference validation factors for	or loops of 2 m, 3 m, and 4 m dia	meters 113
312	Figure B.9 – Construction of the LLAS verif	fication dipole antenna	
313	Figure B.10 – Sensitivity S _D of an LLA with	diameter D relative to an LLA w	/ith 2 m
314	diameter		117
315	Figure B.11 – Conversion factor C_{dA} [for c	onversion into dB(µA/m)] for thre	e standard
316	measurement distances d		
317	Figure C.1 – The Rayleigh criterion for roug	ghness in the ground plane	121
318	Figure H.1 – Investigation of wire radius, no	ormalized to 0,001 m	
319	Figure H.2 – Investigation of feed point loca	ation (not to scale)	
320	Figure H.3 – Variation of NSIL values for va	arious set-ups, for a distance of 3	3 m, h = 1,3148
321	Figure H.4 – Specification of feed point loc	ation for tabular values (not to sc	ale)149
322 323	Figure H.5 – Calculation examples, loop dia Figure H.4	ameter 60 cm, feed point locatior	ı per 151
324	Figure I 1 – Recommended minimum dimer	nsions of the ground plane (top v	iew) 153
325	Figure 1.2 – Recommended obstruction free	e area (top view)	154
326	Figure $1.1 - Comparison of NSII values by$	analytic formulas and computer	simulation 157
327	Figure K 1 – Example site validation result	Standarda	16
328	Figure K.2 – U_{lab} calculated from site valid	lation result	
329	Figure K.3 – Frequency-dependent correcti	ion factor rds iteh ai	16 ⁻
330	Figure L.1 – Antenna arrangement for the s	sum of antenna factors method	
331	Docum	ient Preview	
332	Table 1 – Maximum frequency step size		
333	Table 2 – Acceptance criterion	<u>N IEC 55016-1-4:2024</u>	
334	Table 3 – Site validation methods applicabl	le for OATS, OATS-based, SAC,	and FAR
336	Site types	uation 4 - recommended geon	netries for
227	broadband antonnas ^a (1 of 2)	dation, AN recommended geom	
331 220	Table 5 Example template for 4 and data	sats	
330	Table 5 – Example template for AAPR data	3613	
339	Table 5 – RSM frequency steps		
340	Table 2 Frequency represented at a size	the versus lest distance	
341	Table 0 – Frequency ranges and step sizes	s for FAR site validation	
342	Table 9 – SVSWR measurement position de	esignations (1 of 3)	
343	Table $10 - S_{VSWR}$ reporting requirements		83
344	Table 11 – Specifications for the EUT main	s port of the balanced VHF-LISN	93
345	Table 12 – Specifications for the EUT main	s port of the unbalanced VHF-LI	3N94
346 347	Table B.1 – Reference validation factors of diameters	Figure B.8 for loops of 2 m, 3 m	, and 4 m 114
348	Table B.2 – Sensitivity S_{D} of an LLA with d	liameter <i>D</i> relative to an LLA wit	h 2 m
349	diameter (Figure B.10)		

350		
	Table B.3 – Magnetic field strength conversion factor C_{dA} for three measurement	
351	distances (Figure B.11)	119
352	Table C.1 – Maximum roughness for 3 m, 10 m and 30 m measurement distances .	121
353	Table D.1 – Error budget	125
354 355	Table E.1 – Antenna pair reference site attenuation calibration using the large-OA averaging technique	TS 126
356	Table E.2 – Antenna pair reference site attenuation calibration using REFTS	127
357	Table E.3 – COMTS validation using an antenna pair reference site attenuation	128
358 359	Table F.1 – Example uncertainty estimate for XPR measurement in a FAR and assumed <i>a</i> _{XpT} = 22 dB, <i>a</i> _{XpR} = 34 dB	132
360 361	Table F.2 – Uncertainties depending on other values of A_{xpT} (other assumptions a Table F.1)	s in 13∠
362 363	Table F.3 – Example uncertainty estimate for XPR measurement at an OATS and assumed a_{XPT} = 22 dB, a_{XPR} = 34 dB	135
364 365	Table G.1 – Example measurement uncertainty budget for COMTS validation using NSIL method	the 136
366 367	Table G.2 – Example measurement uncertainty budget for COMTS validation using RSM method	the 139
368	Table H.1 – Calculation examples (loop diameter 60 cm, $d = 3$ m, $h = 1,3$ m)	15′
369	Table H.2 – Calculation examples (loop diameter 60 cm, $d = 5$ m, $h = 1,3$ m)	152
370	Table H.3 – Calculation examples (loop diameter 60 cm, $d = 10$ m, $h = 1,3$ m)	
371	Table I.1 – Skin depth for some practical materials at 9 kHz	154
372	Table J.1 – Recommended NEC implementations	
373	Table J.2 – Observed instabilities	158
374 375	Table K.1 – Measurement uncertainty of radiated disturbance results from 9 kHz to MHz 159	30
376	Table K.2 – Influence of δA_{i} on U_{iab}	159

381		INTERNATIONAL ELECTROTECHNICAL COMMISSION
382		INTERNATIONAL SPECIAL COMMITTEE ON RADIO INTERFERENCE
383		
384 385 386 387		SPECIFICATION FOR RADIO DISTURBANCE AND IMMUNITY MEASURING APPARATUS AND METHODS –
388 389		Part 1-4: Radio disturbance and immunity measuring apparatus – Antennas and test sites for radiated disturbance measurements
390 391		FOREWORD
392 393 394 395 396 397 398 399 400	1)	The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
401 402 403	2)	The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
404 405 406 407	3)	IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
408 409 410	4)	In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
411 412 413	5)	IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
tp <u>s://sta</u> 414	6)	All users should ensure that they have the latest edition of this publication.
415 416 417 418 419	7)	No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
420 421	8)	Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
422 423	9)	Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights
424 425	Th an	is fifth edition cancels and replaces the fourth edition published in 2019, amendment 1:2020 d amendment 2:2023.
426	Th	is edition constitutes a technical revision.
427		

428

- This edition includes the following significant technical changes with respect to the previous edition:
- Revision of the definition 3.1.8 and of the general introduction 8.1 for CMAD;
- Introduction of a new cable termination device, the very high frequency line impedance
 stabilization network (VHF-LISN) in Clause 11.
- Addition of definition 3.1.34 for VHF-LISN, 3.1.21 for reference ground, and 3.1.31 for TN C-S power system,
- Addition of an abbreviation RG in 3.2 for Reference Ground.
- International Standard CISPR 16-1-4 has been prepared by CISPR subcommittee A: Radio interference measurements and statistical methods.
- It has the status of a basic EMC publication in accordance with IEC Guide 107, *Electromagnetic compatibility Guide to the drafting of electromagnetic compatibility publications.*
- This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.
- A list of all parts of CISPR 16 series, under the general title *Specification for radio disturbance and immunity measuring apparatus and methods*, can be found on the IEC website.
- The committee has decided that the contents of the base publication and its amendments will remain unchanged until the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be
- reconfirmed,
 withdrawn,
 replaced by a revised edition, or
 amended.

 IMPORTANT The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its

contents. Users should therefore print this document using a colour printer.

453

454