

Designation: A1040 – 09 Designation: A1040 – 10

Standard Guide for Specifying Harmonized Standard Grade Compositions for Wrought Carbon, Low-Alloy, and Alloy Steels¹

This standard is issued under the fixed designation A1040; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

1. Scope*

- 1.1 This guide covers ASTM Subcommittees A01.02, A01.03, A01.06, A01.09, A01.11, A01.15, A01.19, A01.22, and A01.28 for specifying chemical composition limits of wrought carbon, low-alloy, and alloy steels. It is intended that these recommended grade composition limits be suitable for adoption by other standardization bodies that prepare standards for carbon, low-alloy, and alloy steel products, including discontinued steels.
- 1.2 Included in this guide are the recommendations for determining the number of significant figures for specifying chemical composition.
- 1.3 The carbon and alloy steel grades in all standards overseen by the aforementioned ASTM subcommittees have been included, except those grades applicable to restricted special end uses.
- 1.4 Not addressed are minor composition modifications that a specific ASTM subcommittee may find necessary to accommodate effects of normal processing or to enhance fabricability by the producer or user, or both.
- 1.5 Also not generally addressed (except where established by ASTM subcommittees) is a complete rationalization of all limits, especially where such would conflict with long-standing practices and is not justified by special technical effect.
- 1.6 This guide does not address discontinued or formerly standard steel grades. A listing of such steel grades can be found in SAE J1249. Also excluded from this guide are cast materials and welding filler metals.
- 1.7 In 1995, the AISI made the decision to transfer the responsibility of maintaining its numbering system to the Society of Automotive Engineers (SAE) for carbon and alloy steels (SAE J403 and SAE J404) and to ASTM International for stainless steels (Guide A959 and others). To inform users of this important event, historical information is included in the appendix of this standard.

2. Referenced Documents

2.1 ASTM Standards:²

A276 Specification for Stainless Steel Bars and Shapes VI A1040-10

A941 Terminology Relating to Steel, Stainless Steel, Related Alloys, and Ferroalloys Terminology Relating to Steel, Stainless Steel, Related Alloys, and Ferroalloys

A959 Guide for Specifying Harmonized Standard Grade Compositions for Wrought Stainless Steels

2.2 SAE Standards:³

SAE J403 Chemical Compositions of SAE Carbon Steels

SAE J404 Chemical Compositions of SAE Alloy Steels

SAE J1013 Measurement of Whole Body Vibration of the Seated Operator of Off-Highway Work Machines

SAE J1249 Former SAE Standard and Former SAE EX-Steels

3. Terminology

- 3.1 Definitions of Terms Specific to This Standard:
- 3.1.1 long product, n—generic term describing wrought bars, rod, wire, rail, tubing (welded and seamless), plate, and pipe.
- 3.1.1.1 *Discussion*—Product forms such as "C" shapes, "HP" shapes, "L" shapes, "M" shapes, "MC" shapes, "S" shapes, "W" shapes, and sheet piling are considered long products. Such product forms are produced to mechanical properties and are not normally produced to the chemical compositions listed in this guide.

¹ This guide is under the jurisdiction of ASTM Committee A01 on Steel, Stainless Steel and Related Alloys and is the direct responsibility of Subcommittee A01.97 on Harmonization of Carbon and Alloy Steel Compositions.

Current edition approved April 1, $\frac{2009 \cdot 2010}{2009}$. Published April $\frac{2009 \cdot 2010}{2009}$. Originally approved in 2004. Last previous edition approved in $\frac{2007 \cdot 2009}{2009}$ as A1040 – $\frac{079}{2009}$. DOI: 10.1520/A1040-109.

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

³ Available from Society of Automotive Engineers (SAE), 400 Commonwealth Dr., Warrendale, PA 15096-0001.

- 3.1.2 *flat product*, *n*—generic term describing wrought sheet and strip.
- 3.2 Refer to Terminology A941 for additional definitions of terms used in this guide.

4. Significance and Use

- 4.1 It is anticipated that the ASTM Subcommittees A01.02, A01.03, A01.06, A01.09, A01.11, A01.15, A01.19, A01.22, and A01.28 will use the standard composition limits listed in this guide for the grades identified in their product specifications unless there is a specific technical justification for doing otherwise.
- 4.2 The composition limits given in this guide are to be used as guides in determining limits for each of the elements included in the total composition of each grade. The composition limits have been established with the intent that each ASTM subcommittee will find it necessary to require only a minimum number of changes to reflect specific technical effects. Section 5 lists the general guidelines followed for determining the limits for each element; the limits established in this guide are based upon these guidelines.

5. General Guidelines Used for Determining Composition Limits

5.1 Table 1 gives typical chemical composition limits for respective elements.

6. Harmonized Standard Grade Wrought Carbon, Low-Alloy, and Alloy Steel Compositions

- 6.1 The harmonized composition limits are given in Tables 2-17, grouped by metallurgical classification. Within all tables, grades are listed in numerical order.
- 6.2 Unless adopted by the appropriate product subcommittee in an ASTM standard, the compositions described in this guide shall not be used for specifying an ASTM product.
- 6.3 Criteria for the addition of grades to the grade lists in this guide are as follows: (1) New grades will be considered based upon the grade meeting a standard grade designation and chemistry; (2) New grades shall have an annual production or consumption of 250 tons (225 Mg); (3) New grades shall have the sponsorship of at least two individual users or producers.

7. Keywords (https://standards.iteh.ai)

7.1 alloy steels; carbon steels; harmonized carbon, low-alloy, and alloy steel compositions; low-alloy steels

ASTM A1040-10

https://standards.iteh.ai/catalog/standards/sist/2f579774-1642-488c-8f52-1caab8166cb4/astm-a1040-10

TABLE 1 Expression of Chemical Composition Limits

Chemical Element Chemical Composition Limit

C, Cr, Cu, Mn, Mo, Ni, Pb, Si
Al, Ca, N, Nb (Cb), P, S, Sn, Ti, V
B Two decimal places (0.xxx %)

Three decimal places (0.xxx %)

Four decimal places (0.xxxx %)

TABLE 2 Chemical Composition for Nonresulfurized Carbon Steels

	Composition, A.B.C %						
Grade	C Mn —		P max	S max	P max	S max	
	C	IVIII	Long F	Product	Flat Pr	oduct	
1001	0.01 max	0.35 max			0.030	0.035	
1002	0.02 max	0.35 max			0.030	0.035	
1003	0.04 max	0.35 max			0.030	0.035	
1004	0.02/0.06	0.35 max			0.030	0.035	
1005	0.06 max	0.35 max	0.040	0.050	0.030	0.035	
1006 ^B	0.02/0.08	0.45 max	0.010	0.000	0.030	0.035	
1006 ^D	0.08 max	0.25-0.45	0.040	0.050	0.000	0.000	
1006 ^E	0.08 max	0.45 max	0.0.0	0.000	0.030	0.035	
1007	0.02/0.10	0.50 max			0.030	0.035	
1008 ^D	0.10 max	0.30-0.50	0.040	0.050	0.000	0.000	
1008 ^E	0.10 max	0.50 max	0.010	0.000	0.030	0.035	
1009	0.15 max	0.60 max			0.030	0.035	
1010	0.08-0.13	0.30-0.60	0.040	0.050	0.030	0.035	
1011	0.08-0.13	0.60-0.90	0.040	0.050	0.000	0.000	
1012	0.10-0.15	0.30-0.60	0.040	0.050	0.030	0.035	
1012 1013 ^{D,F}					0.030	0.035	
1013 ⁵ , 1013 ^E	0.11-0.16	0.50-0.80 0.30-0.60	0.040	0.050	0.020	0.005	
1013- 1015	0.11-0.16		0.040	0.050	0.030	0.035 0.035	
1015	0.13-0.18 0.13-0.18	0.30-0.60	0.040	0.050 0.050	0.030 0.030	0.035	
		0.60-0.90					
1017	0.15-0.20	0.30-0.60	0.040	0.050	0.030	0.035	
1018	0.15-0.20	0.60-0.90	0.040	0.050	0.030	0.035	
1019	0.15-0.20	0.70-1.00	0.040	0.050	0.030	0.035	
1020	0.18-0.23	0.30-0.60	0.040	0.050	0.030	0.035	
1021	0.18-0.23	0.60-0.90	0.040	0.050	0.030	0.035	
1022	0.18-0.23	0.70-1.00	0.040	0.050	0.030	0.035	
1023	0.20-0.25	0.30-0.60	0.040	0.050	0.030	0.035	
1024	0.18-0.25	1.30-1.65	0.035	0.035	0.000	0.005	
1025	0.22-0.28	0.30-0.60	0.040	0.050	0.030	0.035	
1026	0.22-0.28	0.60-0.90	0.040	0.050	0.030	0.035	
1027	0.22-0.29	1.20-1.55	0.035	0.035			
1029	0.25-0.31	0.60-0.90	0.040	0.050			
1030	0.28-0.34	0.60-0.90	0.040	0.050	0.030	0.035	
1033	0.30-0.36	0.70-1.00	0.040	0.050	0.030	0.035	
1034	0.32-0.38	0.50-0.80	0.040	0.050			
1035	0.32-0.38	0.60-0.90	0.040	0.050	0.030	0.035	
1037	0.32-0.38	0.70-1.00	0.040	0.050	0.030	0.035	
1038	0.35-0.42	0.60-0.90	0.040	0.050	0.030	0.035	
1039	0.37-0.44	0.70-1.00 AST	10.040 1	0.050	0.030	0.035	
1040	0.37-0.44	0.60-0.90	0.040	0.050	0.030	0.035	
1042/stand	ards 1 0.40-0.47 alog	stanc0.60-0.90st/215	/9//0.040/42-4	88c-80.050 caa	68166 0.030 astm-	0.035	
1043	0.40-0.47	0.70-1.00	0.040	0.050	0.030	0.035	
1044	0.43-0.50	0.30-0.60	0.040	0.050			
1045	0.43-0.50	0.60-0.90	0.040	0.050	0.030	0.035	
1046	0.43-0.50	0.70-1.00	0.040	0.050	0.030	0.035	
1049	0.46-0.53	0.60-0.90	0.040	0.050	0.030	0.035	
1050	0.48-0.55	0.60-0.90	0.040	0.050	0.030	0.035	
1053	0.48-0.55	0.70-1.00	0.040	0.050			
1055	0.50-0.60	0.60-0.90	0.040	0.050	0.030	0.035	
1059	0.55-0.65	0.50-0.80	0.040	0.050			
1060	0.55-0.65	0.60-0.90	0.040	0.050	0.030	0.035	
1064	0.60-0.70	0.50-0.80	0.040	0.050	0.030	0.035	
1065	0.60-0.70	0.60-0.90	0.040	0.050	0.030	0.035	
1069	0.65-0.75	0.40-0.70	0.040	0.050			
1070	0.65-0.75	0.60-0.90	0.040	0.050	0.030	0.035	
1070m ^{<i>G</i>}	0.65-0.75	0.80-1.10	0.025	0.025			
1071	0.65-0.70	0.75-1.05	0.040	0.050			
1074	0.70-0.80	0.50-0.80	0.040	0.050	0.030	0.035	
1075	0.70-0.80	0.40-0.70	0.040	0.050			
1078	0.72-0.85	0.30-0.60	0.040	0.050	0.030	0.035	
1080	0.75-0.88	0.60-0.90	0.040	0.050	0.030	0.035	
	00	0.00 0.00	0.010	0.000	5.500	0.000	

TABLE 2 Continued

			Composition	A,B,C %		
Grade		Mo	P max	S max	P max	S max
	C Mn	IVITI	Long Product		Flat Product	
1085	0.80-0.93	0.70-1.00	0.040	0.050	0.030	0.035
1086	0.80-0.93	0.30-0.50	0.040	0.050	0.030	0.035
1090	0.85-0.98	0.60-0.90	0.040	0.050	0.030	0.035
1095	0.90-1.03	0.30-0.50	0.040	0.050	0.030	0.035

A Where silicon is required, the following ranges and limits are commonly specified: 0.10 % maximum, 0.10 % to 0.20 %, 0.15 % to 0.35 %, 0.15 % to 0.40 %, 0.20 % to 0.40 %, or 0.30 % to 0.60 %.

TABLE 3 Chemical Composition for Resulfurized Steels

Crada		Composition	on, ^{A,B} %	
Grade	С	Mn	P max	S max
1108	0.08-0.13	0.60-0.80	0.040	0.08-0.13
1109	0.08-0.13	0.60-0.90	0.040	0.08-0.13
1110	0.08-0.13	0.30-0.60	0.040	0.08-0.13
1115	0.13-0.20	0.60-0.90	0.040	0.08-0.13
1116	0.14-0.20	1.10-1.40	0.040	0.16-0.23
1117	0.14-0.20	1.00-1.30	0.040	0.08-0.13
1118	0.14-0.20	1.30-1.60	0.040	0.08-0.13
1119	0.14-0.20	1.00-1.30	0.040	0.24-0.33
1132	0.27-0.32	1.35-1.65	0.040	0.08-0.13
1137	0.32-0.39	1.35-1.65	0.040	0.08-0.13
1139	0.35-0.43	1.35-1.65	0.040	0.13-0.20
1140	0.37-0.44	0.70-1.00	0.040	0.08-0.13
1141	0.37-0.45	1.35-1.65	0.040	0.08-0.13
1144	0.40-0.48	1.35-1.65	0.040	0.24-0.33
1145	0.42-0.49	0.70-1.00	0.040	0.04-0.07
1146	0.42-0.49	0.70-1.00	0.040	0.08-0.13
1151	0.48-0.55	0.70-1.00	0.040	0.08-0.13

Alt is not common practice to produce these steels to specified limits for silicon because of its adverse effect on machinability.

TABLE 4 Chemical Composition for Rephosphorized and Resulfurized Carbon Steels

Grade		Composi	tion, ^{A,B} %	
Grade	С	Mn	Р	S
1211	0.13 max	0.60-0.90	0.07-0.12	0.10-0.15
1212	0.13 max	0.70-1.00	0.07-0.12	0.16-0.23
1213	0.13 max	0.70-1.00	0.07-0.12	0.24-0.33
1215	0.09 max	0.75-1.05	0.04-0.09	0.26-0.35

Alt is not common practice to produce these steels to specified limits for silicon because of its adverse effect on machinability.

^B If required, copper can be specified as 0.20 % minimum.

^C Where boron treatment for killed steel is specified for enhanced hardenability, titanium is generally added to shield the boron from oxidation. Boron levels between 0.0005 % and 0.0030 % can be expected for this practice. If the usual titanium addition is not permitted, the steel may contain up to 0.0050 % boron for enhanced hardenability.

^D Long product.

E Flat product.

 $^{^{\}it F}$ SAE J1013 has chemical limits for manganese of 0.30-0.60 %.

^G 1070m has chemical limits for silicon, 0.15-0.35 %; chromium, 0.20 % maximum; nickel, 0.25 % maximum; and molybdenum, 0.10 % maximum.

^B Where silicon is required, the following ranges and limits are commonly specified: 0.10 % maximum, 0.10 % to 0.20 %, 0.15 % to 0.35 %, 0.20 % to 0.40 %, or 0.30 % to 0.60 %.

^B Where silicon is required, the following ranges and limits are commonly specified: 0.10 % maximum, 0.10 % to 0.20 %, 0.15 % to 0.35 %, 0.20 % to 0.40 %, or 0.30 % to 0.60 %.

TABLE 5 Chemical Composition for High-Manganese Carbon Steels

	Composition, A,B,C %						
Grade	С	Mn	P max	S max	P max	S max	
	C	IVIII	Long F	Product	Flat P	roduct	
1513	0.10-0.16	1.10-1.40	0.040	0.050			
1518	0.15-0.21	1.10-1.40	0.040	0.050			
1522	0.18-0.24	1.10-1.40	0.040	0.050			
1524	0.19-0.25	1.35-1.65	0.040	0.050	0.030	0.035	
1525	0.23-0.29	0.80-1.10	0.040	0.050			
1526	0.22-0.29	1.10-1.40	0.040	0.050			
1527	0.22-0.29	1.20-1.50	0.040	0.050	0.030	0.035	
1536	0.30-0.37	1.20-1.50	0.040	0.050	0.030	0.035	
1541	0.36-0.44	1.35-1.65	0.040	0.050	0.030	0.035	
1547	0.43-0.51	1.35-1.65	0.040	0.050			
1548	0.44-0.52	1.10-1.40	0.040	0.050	0.030	0.035	
1551	0.45-0.56	0.85-1.15	0.040	0.050			
1552	0.47-0.55	1.20-1.50	0.040	0.050	0.030	0.035	
1561	0.55-0.65	0.75-1.05	0.040	0.050			
1566	0.60-0.71	0.85-1.15	0.040	0.050			
1572	0.65-0.76	1.00-1.30	0.040	0.050			

^A Where silicon is required, the following ranges and limits are commonly specified: 0.10 % maximum, 0.10 % to 0.20 %, 0.15 % to 0.35 %, 0.20 % to 0.40 %, or 0.30 % to 0.60 %.

TABLE 6 Chemical Composition for Carbon Steels with Hardenability Requirements

Crada	Composition, %					
Grade	С	Mn	P max	S max	Si	
1038H	0.34-0.43	0.50-1.00	0.040	0.050	0.15-0.30	
1045H	0.42-0.51	0.50-1.00	0.040	0.050	0.15-0.30	
1522H	0.17-0.25	1.00-1.50	0.040	0.050	0.15-0.30	
1524H	0.18-0.26	1.25-1.75	0.040	0.050	0.15-0.30	
1526H	0.21-0.30	1.00-1.50	0.040	0.050	0.15-0.30	
1541H	0.35-0.45	1.25-1.75	0.040	0.050	0.15-0.30	
1552H	0.47-0.55	1.00-1.50	0.040	0.050	0.15-0.30	

TABLE 7 Chemical Composition for Standard High-Manganese Boron Carbon Steels with Hardenability Requirements

Grade	5.1011.di Catalog Stark	dalas/5150/215/7//	Composition, ^A %	10440010000170	isan aro io re
Grade	С	Mn	Р	S	Si
15B21H	0.17-0.24	0.70-1.20	0.040	0.050	0.15-0.30
15B35H	0.31-0.39	0.70-1.20	0.040	0.050	0.15-0.30
15B37H	0.30-0.39	1.00-1.50	0.040	0.050	0.15-0.30
15B41H	0.35-0.45	1.25-1.75	0.040	0.050	0.15-0.30
15B48H	0.43-0.53	1.00-1.50	0.040	0.050	0.15-0.30
15B62H	0.54-0.67	1.00-1.50	0.040	0.050	0.15-0.30

A Where boron treatment for killed steel is specified for enhanced hardenability, titanium is generally added to shield the boron from oxidation. Boron levels between 0.0005 % and 0.0030 % can be expected for this practice. If the usual titanium addition is not permitted, the steel may contain up to 0.0050 % boron for enhanced hardenability.

TABLE 8 Chemical Composition for Standard High-Manganese Boron Carbon Steels with Restricted Hardenability Requirements

Grade			Composition, ^A %		
Grade	С	Mn	Р	S	Si
15B21 RH	0.17-0.22	0.80-1.10	0.035	0.040	0.15-0.35
15B35 RH	0.33-0.38	0.80-1.10	0.035	0.040	0.15-0.35

A Where boron treatment for killed steel is specified for enhanced hardenability, titanium is generally added to shield the boron from oxidation. Boron levels between 0.0005 % and 0.0030 % can be expected for this practice. If the usual titanium addition is not permitted, the steel may contain up to 0.0050 % boron for enhanced hardenability.

 $^{^{\}it B}$ If required, copper can be specified as 0.20 % minimum.

of If lead is required as an added element to a standard steel, a range of 0.15 % to 0.35 % inclusive is specified. Such a steel is identified by inserting the letter "L" between the second and third numerals of the grade designation, for example, 15L25. A heat analysis is not determinable where lead is added to the ladle stream.

TABLE 9 Chemical Composition for Microalloyed Carbon Steels

Grade			Composition, A,B %		
	С	Mn	P max	S	V
10V40	0.37-0.44	0.60-0.90	0.040	0.050 max	0.02-0.20
10V45	0.43-0.50	0.60-0.90	0.040	0.050 max	0.02-0.20
11V37	0.32-0.39	1.35-1.65	0.040	0.08-0.13	0.02-0.20
11V41	0.37-0.45	1.35-1.65	0.040	0.08-0.13	0.02-0.20
15V24	0.19-0.25	1.35-1.65	0.040	0.050 max	0.02-0.20
15V41	0.36-0.44	1.35-1.65	0.040	0.050 max	0.02-0.20

^A Where silicon is required, the following ranges and limits are commonly specified: 0.10 % maximum, 0.10 % to 0.20 %, 0.15 % to 0.35 %, 0.20 % to 0.40 %, or 0.30 % to 0.60 %. $^{\it B}$ Microalloyed carbon steels are standardized grades containing vanadium as the microalloying element.

TABLE 10 Chemical Composition for Leaded Carbon Steels

Grade	Composition, A,B %					
Grade	С	Mn	Р	S	Pb	
11L18	0.14-0.20	1.30-1.60	0.040 max	0.08-0.13	0.15-0.35	
12L13	0.13 max	0.70-1.00	0.07-0.12	0.24-0.33	0.15-0.35	
12L14	0.15 max	0.85-1.15	0.04-0.09	0.26-0.35	0.15-0.35	
12L15	0.09 max	0.75-1.05	0.04-0.09	0.26-0.35	0.15-0.35	

Alf lead is required as an added element to a standard steel, a range of 0.15 % to 0.35 % inclusive is specified. Such a steel is identified by inserting the letter "L" between the second and third numerals of the grade designation, for example, 12L15. A heat analysis is not determinable if lead is added to the ladle stream.

Because the second and third numerals of the grade designation, for example, 12L15. A heat analysis is not determinable if lead is added to the ladle stream.

Because the second and third numerals of the grade designation, for example, 12L15. A heat analysis is not determinable if lead is added to the ladle stream.

Because the second and third numerals of the grade designation, for example, 12L15. A heat analysis is not determinable if lead is added to the ladle stream.

TABLE 11 Chemical Composition for Merchant Quality M Series Carbon Steels

0	1	Composition,	%	
Grade	C	Mn ^A	P max	S max
M1008	0.10 max	0.25-0.60	0.040	0.050
M1010	0.07-0.14	0.25-0.60	0.040	0.050
M1012	0.09-0.16	0.25-0.60	0.040	0.050
M1015	0.12-0.19	0.25-0.60	0.040	0.050
M1017	0.14-0.21	0.25-0.60	0.040	0.050
M1020	0.17-0.24	0.25-0.60	0.040	0.050
M1023	0.19-0.27	0.25-0.60	0.040	0.050
M1025	0.20-0.30	A S T 0.25-0.60	0.040	0.050
M1031	0.26-0.36	0.25-0.60	0.040	0.050
M1044 and ards	iteh al/00.40-0.50 andar	ds/sist/210 /0.25-0.60 642-4880	2-8152-0.040ab8166cb	4/astm-0.050-U-10

A Unless prohibited by the purchaser, the manganese content may exceed 0.60 % on heat analysis to a maximum of 0.75 %, provided that the carbon range on heat analysis has the minimum and maximum reduced by 0.01 percentage point for each 0.05 percentage point manganese over 0.60 %.