INTERNATIONAL STANDARD

Fourth edition 2019-07

Paper, board, pulps and cellulose nanomaterials — Determination of residue (ash content) on ignition at 525 °C

Papier, carton et pâtes et nanomatériaux à base de cellulose — Détermination du résidu (cendres) après incinération à 525 °C **iTeh STANDARD PREVIEW**

(standards.iteh.ai)

<u>ISO 1762:2019</u> https://standards.iteh.ai/catalog/standards/sist/a047a1d6-e554-4d2e-9713-5e360c816269/iso-1762-2019

Reference number ISO 1762:2019(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 1762:2019</u> https://standards.iteh.ai/catalog/standards/sist/a047a1d6-e554-4d2e-9713-5e360c816269/iso-1762-2019

COPYRIGHT PROTECTED DOCUMENT

© ISO 2019

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Fax: +41 22 749 09 47 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Page

Contents

Fore	reword	iv
1	Scope	
2	Normative references	
3	Terms and definitions	
4	Principle	2
5	Apparatus	
6	 Sampling and preparation of test specimen 6.1 Sample amount 6.2 Paper, board and pulp sampling 6.3 Cellulose nanomaterial sampling 	
7	Procedure 7.1 General 7.2 Measurement of moisture or dry matter content 7.3 Incineration 7.3.1 General 7.3.2 Incineration of paper, board and pulps 7.3.3 Incineration of cellulose nanomaterials 7.4 Measurement of residue (ash) mass	4 4 5 5 5 5 5 5 5 5 5 5 5 5 5
8	Expression of results STANDARD PREVIEW	5
9	Test report (standards.iteh.ai)	
	nex A (informative) Precision <u>ISO 1762:2019</u> bliography https://standards:iteh:ai/catalog/standards/sist/a047a1d6-e554-4d2e-9713- 5e360c816269/iso-1762-2019	7

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see <u>www.iso</u> .org/iso/foreword.html. (standards.iteh.ai)

This document was prepared by Technical Committee ISO/TC 6, Paper, board and pulps.

This fourth edition cancels and replaces the third edition (ISO 1762:2015), which has been technically revised. The main changes compared to the previous edition are as follows:

- Scope revised to cover cellulose nanomaterials instead of only paper, board and pulps;
- A definition of cellulose nanomaterial, along with additional instructions for sampling, sample preparation, and incineration for cellulose nanomaterials have been incorporated;
- Additional instructions are given on how to express results when a sample has low ash content.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at <u>www.iso.org/members.html</u>.

Paper, board, pulps and cellulose nanomaterials — Determination of residue (ash content) on ignition at 525 °C

1 Scope

This document describes the determination of the residue (ash content) on ignition of paper, board, pulps and cellulose nanomaterials at 525 °C. It is applicable to all types of paper, board, pulp and cellulose nanomaterial samples.

This document provides measurement procedures to obtain a measurement precision of 0,01 % or better for residue (ash content) on ignition at 525 °C.

Determination of residue (ash content) on ignition at 900 °C of paper, board, pulps and cellulose nanomaterials is described in ISO 2144.

In the context of this document, the term "cellulose nanomaterial" refers specifically to cellulose nanoobject (see 3.2 to 3.4). Owing to their nanoscale dimensions, these cellulose nano-objects can have intrinsic properties, behaviours or functionalities that are distinct from those associated with paper, board and pulps.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. https://standards.iteh.ai/catalog/standards/sist/a047a1d6-e554-4d2e-9713-

ISO 186, Paper and board - Sampling to determine average quality

ISO 287, Paper and board — Determination of moisture content of a lot — Oven-drying method

ISO 638, Paper, board and pulps — Determination of dry matter content — Oven-drying method

ISO 7213, Pulps — Sampling for testing

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

ISO Online browsing platform: available at https://www.iso.org/obp

— IEC Electropedia: available at http://www.electropedia.org/

3.1 residue on ignition

ash content

ratio of the mass of the residue remaining after a test specimen of paper, board, pulp or *cellulose nanomaterial* (3.2) is ignited at 525 °C \pm 25 °C to the oven-dry mass of the test specimen before ignition

Note 1 to entry: This property has been referred to as either "residue on ignition" or "ash content" in earlier editions of this document.

32

cellulose nanomaterial

material composed predominantly of cellulose, with any external dimension between approximately 1 nm and 100 nm, or a material having internal structure or surface structure in the nanoscale, with the internal structure or surface structure composed predominantly of cellulose

Note 1 to entry: The terms nanocellulose and cellulosic nanomaterial are synonymous with cellulose nanomaterial.

Note 2 to entry: Some cellulose nanomaterials can be composed of chemically modified cellulose.

Note 3 to entry: This generic term is inclusive of cellulose nano-object and cellulose nanostructured material.

Note 4 to entry: See also definitions of cellulose, nanoscale, cellulose nano-object and cellulose nanostructured material in ISO/TS 20477:2017.

[SOURCE: ISO/TS 20477:2017, 3.3.1, modified — "1 nm to 100 nm" changed to "1 nm and 100 nm"; abbreviations deleted from Note 1 to entry; Note 4 to entry added.]

3.3

nano-object

discrete piece of material with one, two or three external dimensions in the nanoscale

Note 1 to entry: The second and third external dimensions are orthogonal to the first dimension and to each other.

[SOURCE: ISO/TS 80004-1:2015, 2.5]

iTeh STANDARD PREVIEW

3.4

nano-object composed predominantly of cellulose

[SOURCE: ISO/TS 20477:2017, 5.2]

ISO 1762:2019 https://standards.iteh.ai/catalog/standards/sist/a047a1d6-e554-4d2e-9713-

5e360c816269/iso-1762-2019

3.5 nanoscale

length range approximately from 1 nm to 100 nm

Note 1 to entry: Properties that are not extrapolations from larger sizes are predominantly exhibited in this length range.

[SOURCE: ISO/TS 80004-1:2015, 2.1]

Principle 4

The test specimen is weighed in a heat-resistant crucible and ignited in a muffle furnace at $525 \text{ °C} \pm 25 \text{ °C}$. The moisture or dry matter content of a separate test specimen is also measured. The percentage ash is then determined, on a dry (moisture-free) basis, from the mass of residue after ignition and the moisture or dry matter content of the sample.

The ash may consist of

- a) mineral matter in the paper, board, pulp and cellulose nanomaterial and various residues from chemicals used in its manufacture;
- b) metallic matter from piping and machinery;
- fillers, pigments, coatings or residues from various additives. c)

In samples containing calcium carbonate, there is practically no decomposition of carbonate by ashing at 525 °C. Other fillers and pigments such as clay and titanium dioxide are also unaffected by ashing at 525 °C. Accordingly, the residue on ignition provides a good estimate of the total inorganic matter in the sample, provided that the sample does not contain other minerals which decompose at or below this temperature. For example, magnesium carbonate and calcium sulfate may, at least partly, decompose at temperatures below 525 °C.

5 Apparatus

5.1 Heat-resistant crucibles, made of platinum, porcelain or silica, with a capacity of 50 ml to 100 ml.

Larger-capacity crucibles may also be used for low-density materials to accommodate sufficient sample.

A lid of an appropriate material, placed slightly ajar to allow air for combustion, may also be used with the crucible to help prevent low density or flyaway material from escaping during the ash ignition process.

Platinum crucibles are recommended if a small amount of residue is expected.

Muffle furnace, capable of maintaining a temperature of 525 °C ± 25 °C. 5.2

It is recommended that the furnace be placed in a hood or that means are provided for evacuating smoke and fumes.

Analytical balance, with a scale division (readability) of 0,1 mg or better in order to obtain a 5.3 measurement precision of 0,01 % or better.

iTeh STANDARD PREVIEW 5.4 Desiccator.

(standards.iteh.ai) Sampling and preparation of test specimen

6

WARNING — The method specified in this document involves the use of nanomaterials. Care should be taken to ensure observation of the relevant precautions and guidelines for nanotechnology laboratory safety and best practices.

6.1 Sample amount

Sufficient material shall be collected to allow for at least duplicate determinations and for determination of moisture or dry matter content.

6.2 Paper, board and pulp sampling

Guidance on obtaining representative samples found in ISO 186 for paper and board and in ISO 7213 for pulps delivered in bales or rolls shall be followed in cases where the analysis is being conducted to evaluate a lot. In this case or if the tests are made on another type of sample, take test specimens from various parts of the sample making sure they are thoroughly representative of the sample.

The test specimen taken for incineration shall consist of a number of small pieces no larger than 1 cm². In a similar manner, obtain a moisture content or dry matter content specimen from the sample.

The specimen for incineration shall have a total mass of not less than 1 g on an oven-dry basis, and sufficient to give a residue on ignition of not less than 10 mg and preferably over 20 mg (see <u>Clause 7</u>).

If the material has a very low residue on ignition (for example, in the case of so-called ashless grades), it might be necessary to divide the test specimen into two or several smaller portions which are incinerated consecutively in the same crucible, in order to obtain a total residue of at least 10 mg.

Cellulose nanomaterial sampling 6.3

For cellulose nanomaterials, care should be taken that the procedure is appropriate for the material being sampled. There is no ISO standard procedure for sampling cellulose nanocrystals, either in

aqueous suspensions or dried forms, or for sampling dilute (wet) cellulose nanofibrils. When the original cellulose nanomaterial sample is a wet form or an aqueous suspension (dilute or concentrated), it shall be dried using an appropriate method such as heating at 105 °C, freeze-drying or spray-drying, to give the sample in a solid form such as flakes, powder or other solid, which shall be mixed to homogeneity. The test specimen shall be obtained from this pre-dried sample. In a similar manner, obtain a moisture content or dry matter content specimen from the sample. Filtration to concentrate dilute samples prior to drying is not recommended as it may result in loss of dissolved material which gives ash upon heating to 525 °C.

Chemically modified pulps are often prepared through TEMPO-mediated oxidation, carboxymethylation or phosphorylation prior to the production of cellulose nanofibrils (CNF). Chemically modified pulps, CNF made from chemically modified pulps, as well as cellulose nanocrystals (CNC) extracted from pulps by sulfuric acid hydrolysis or oxidative procedures, may contain various cations associated with the ionic carboxylate or phosphate groups introduced at the surface during production. When these pulps or cellulose nanomaterials are in the acidic form (i.e. contain only protons as the cations), they will have very low ash content. The ash content will be greater in pulps and cellulose nanomaterials containing metal cations, such as sodium or calcium, or organic cations such as alkyl ammonium cations.

NOTE TEMPO stands for 2,2,6,6-tetramethylpiperidine-1-oxyl.

The mass of the test specimen shall be at least 1 g on a dry basis. For cellulose nanomaterials – particularly those in the form of a dilute suspension, and/or those of very low ash content such as the acidic forms of cellulose nanomaterials - it is often not feasible to collect sufficient test specimen to yield at least 10 mg of ash on ignition. This is still acceptable and in conformity with the requirements of this document.

iTeh STANDARD PREVIEW Less than 10 mg ash could lead to reduced precision.

If the material is very low-density and/or flyaway (e.g. freeze-dried cellulose nanocrystals), it may be compacted (e.g. by compressing it manually in the crucible or using equipment which will not impart extraneous mineral content to the sample) in a manner to increase the bulk density such that sufficient material will fit in the crucibles used. However, this reduces the speed of incineration.

Procedure 7

NOTE

WARNING — The method specified in this document involves the use of nanomaterials. Care should be taken to ensure observation of the relevant precautions and guidelines for nanotechnology laboratory safety and best practices.

7.1 General

Carry out the procedure in at least duplicate. Allow wet test specimens and moisture or dry matter specimens to air-dry, and condition other test specimens under dust-free conditions in the ambient laboratory air until they reach equilibrium moisture.

7.2 Measurement of moisture or dry matter content

Determine the moisture or dry matter content on the relevant test specimen (air-dry) using the procedure described in ISO 287 or ISO 638, as relevant. Do not use the moisture or dry matter content test specimen for incineration. Weigh the crucible containing the moisture or dry matter content test specimen at the same time as the crucible containing the test specimen (air-dry) used for incineration (see <u>7.3</u>).

7.3 Incineration

7.3.1 General

Heat the empty crucible (5.1) for 30 min to 60 min in the muffle furnace (5.2) at 525 °C \pm 25 °C. Cool it to room temperature in a desiccator (5.4).

Weigh the empty crucible to the nearest 0,1 mg. Add the test specimen and immediately weigh again to the nearest 0,1 mg. To prevent low-density materials such as freeze-dried cellulose nanocrystals from becoming flyaway during ignition, they may be compacted (the bulk density increased) as described in 6.3.

Place the crucible containing the test specimen in the furnace at room temperature and gradually raise the temperature to 525 °C (about 200 °C/h) in order to burn the sample without it bursting into flames, and to ensure that no material is lost in the form of flying particles.

7.3.2 Incineration of paper, board and pulps

Maintain the ignition temperature of 525 °C for at least 2 h in the case of pulp and board samples, and at least 3 h for paper samples. The specimen shall be completely charred as indicated by the absence of black particles.

Incineration of cellulose nanomaterials 7.3.3

Maintain the ignition temperature of 525 °C for at least 5 h for cellulose nanomaterial samples. Black particles typically remain in cellulose nanocrystal samples after 5 h at 525 °C. It is recommended that several drops of deionized water are added to the residue and that a further ashing is carried out at 525 °C until no black particles remain.

ISO 1762:2019

7.4 Measurementsoftresidue (ash) mass uds/sist/a047a1d6-e554-4d2e-9713-

 $\frac{5e360c816269/iso-1762-2019}{\text{Remove the crucible from the furnace and allow it to attain room temperature in a desiccator (5.4)}.$ Weigh the crucible and contents as before to the nearest 0,1 mg.

8 Expression of results

For each crucible, calculate the percentage ash content on ignition using Formula (1):

$$X = \frac{100m_{\rm r}}{m_{\rm s}}$$

where

- is the ash content, as a percentage of the mass of the test specimen on an oven-dry basis; Χ
- m_r is the mass of the residue (the mass of the crucible with the residue, minus that of the empty crucible) in grams (g);
- $m_{\rm s}$ is the mass of the test specimen, on an oven-dry basis, in grams (g). This is determined from the average of the replicate moisture content or dry matter content determinations.

Check that there is reasonable agreement between the replicate measurements. For test specimens with ash contents above 0,1 %, reasonable agreement exists if the deviation of results from the mean of parallel determinations does not exceed 10 % of the mean value. If this is not the case, repeat the entire procedure with new test specimens, preferably of larger mass.

(1)