Designation: C507-10a

Standard Specification for Reinforced Concrete Elliptical Culvert, Storm Drain, and Sewer Pipe ${ }^{1}$

Abstract

This standard is issued under the fixed designation C507; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the Department of Defense.

1. Scope

1.1 This specification covers reinforced elliptically shaped concrete pipe to be used for the conveyance of sewage, industrial wastes, and storm water, and for the construction of culverts.
1.2 Pipe designed for placement with the major axis horizontal shall be designated as "Horizontal Elliptical Pipe." Pipe designed for placement with the major axis vertical shall be designated as "Vertical Elliptical Pipe."
1.3 This specification is the inch-pound companion to Specification C507M; therefore, no SI equivalents are presented in the specification.

Abstract

Note 1-This specification is a manufacturing and purchase specification only, and does not include requirements for bedding, backfill, or the relationship between field load condition and the strength classification of pipe. However, experience has shown that the successful performance of this product depends upon the proper selection of the class of pipe, type of bedding and backfill, and care that the installation conforms to the construction specifications. The owner of the reinforced concrete pipe specified herein is cautioned that he must correlate the field requirements with the class of pipe specified and provide inspection at the construction site.

2. Referenced Documents

2.1 ASTM Standards: ${ }^{2}$

A36/A36M Specification for Carbon Structural Steel
A82/A82M Specification for Steel Wire, Plain, for Concrete Reinforcement
A185/A185M Specification for Steel Welded Wire Reinforcement, Plain, for Concrete

[^0]A496/A496M Specification for Steel Wire, Deformed, for Concrete Reinforcement
A497/A497M Specification for Steel Welded Wire Reinforcement, Deformed, for Concrete
A615/A615M Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement
A706/A706M Specification for Low-Alloy Steel Deformed and Plain Bars for Concrete Reinforcement
C33 Specification for Concrete Aggregates
C150 Specification for Portland Cement
C260 Specification for Air-Entraining Admixtures for Concrete
C309 Specification for Liquid Membrane-Forming Compounds for Curing Concrete
C494/C494M Specification for Chemical Admixtures for Concrete
C497M Test Methods for Concrete Pipe, Manhole Sections, or Tile [Metric]
C595 Specification for Blended Hydraulic Cements
C618 Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete
C822 Terminology Relating to Concrete Pipe and Related Products
C989 Specification for Slag Cement for Use in Concrete and Mortars
C1017/C1017M Specification for Chemical Admixtures for Use in Producing Flowing Concrete
C1116 Specification for Fiber-Reinforced Concrete and Shotcrete

3. Terminology

3.1 Definitions-For definitions of terms relating to concrete pipe, see Terminology C822.

4. Classification

4.1 Pipe manufactured according to this specification shall be of five classes each for horizontal elliptical and vertical elliptical pipe with identification as follows:

NOTICE: This standard has either been superseded and replaced by a new version or withdrawn. Please contact ASTM International (www.astm.org) for the latest information. (牙) C507-10a

Horizontal Elliptical Pipe	Vertical Elliptical Pipe
Class HE-A	Class VE-II
Class HE-I	Class VE-III
Class HE-II	Class VE-IV
Class HE-III	Class VE-V
Class HE-IV	Class VE-VI

4.2 The strength requirements for horizontal elliptical pipe are prescribed in Table 1 and for vertical elliptical pipe are prescribed in Table 2.

5. Basis of Acceptance

5.1 Unless otherwise designated by the owner at the time of, or before, placing an order, there are two separate and alternative bases of acceptance. Independent of the method of acceptance, the pipe shall be designed to meet both the $0.01-\mathrm{in}$. crack and ultimate strength requirements.
5.1.1 Acceptance on Basis of Plant Load-Bearing Tests, Material Tests, and Inspection of Manufactured Pipe for Visual Defects and Imperfections-Acceptability of the pipe in all diameters and classes produced in accordance with 7.1 or 7.2 shall be determined by the results of the three-edge-bearing tests as defined in 11.3.1; by such material tests as are required in $6.2,6.3,6.5$, and 6.6 ; by an absorption test of the concrete from the wall of the pipe as required in 11.9; and by visual inspection of the finished pipe to determine its conformance with the accepted design and its freedom from defects.
5.1.2 Acceptance on the Basis of Material Tests and Inspection of Manufactured Pipe for Defects and ImperfectionsAcceptability of the pipe in all diameters and classes produced in accordance with 7.1 or 7.2 shall be determined by the results of such material tests as are required in $6.2,6.3,6.5$, and 6.6 ; by crushing tests on concrete cores or cured concrete cylinders;

TABLE 1 Design Requirements for Horizontal Elliptical (HE) Pipe ${ }^{A}$
Note 1 -The test load in pounds per linear foot equals $D-l o a d \times$ inside span in feet.
Note 2-Single cage reinforcement, providing tension steel at the top, bottom, and springline, shall be permitted instead of double cage reinforcement. The area of such reinforcement shall be 112% of the tabulated inner cage area.

Note 3-An inner and outer cage plus quadrant mats shall be permitted instead of double cage reinforcement. The area of such reinforcement shall be in accordance with Fig. 1.

Note 4-An inner and outer cage plus a middle cage shall be permitted instead of double cage reinforcement. The area of such reinforcement shall be in accordance with Fig. 2.

Designated Diameter, Equivalent Round Size, in.	Designated Rise, in. \times Span, in.	Minimum Wall Thickness, in.	Reinforcement, in. ${ }^{\text {//linear ft }}$									
			Class HE-A		Class HE-I		Class HE-II		Class HE-III		Class HE-IV	
					D-Loads							
			$\begin{gathered} 0.01=600 \\ \text { Ult }=900 \end{gathered}$		$\begin{aligned} & 0.01=800 \\ & \text { Ult }=1200 \end{aligned}$		$\begin{gathered} 0.01=1000 \\ \text { Ult }=1500 \end{gathered}$		$\begin{gathered} 0.01=1350 \\ \text { Ult }=2000 \end{gathered}$		$\begin{gathered} 0.01=2000 \\ \text { Ult }=3000 \end{gathered}$	
			$\begin{aligned} & \text { In } \\ & \text { Cage } \end{aligned}$	Out Cage	$\begin{aligned} & \text { In } \\ & \text { Cage } \end{aligned}$	Out Cage	$\begin{aligned} & \text { In } \\ & \text { Cage } \end{aligned}$	$\begin{aligned} & \text { Out } \\ & \text { Cage } \end{aligned}$	$\begin{aligned} & \text { In } \\ & \text { Cage } \end{aligned}$	$\begin{aligned} & \text { Out } \\ & \text { Cage } \end{aligned}$	$\begin{aligned} & \text { In } \\ & \text { Cage } \end{aligned}$	Out Cage
18	14×23	23/4	0.08		0.11		0.14	. .	0.19		0.27	. .
24	19×30	$31 / 4$	0.11		0.15	. .	0.19	\ldots	0.26	\ldots	0.39	\ldots
27	22×34	$31 / 2$	0.14		0.18		0.23	\ldots	0.31		0.45	. .
30	24×38	33/4	0.10	0.10	0.12	0.12	0.17	0.17	0.23	0.23	0.34	0.34
33	27×42	33/4	0.12	0.12	0.17	0.17	0.21	0.21	0.27	0.27	0.41	0.41
36	29×45	$41 / 2$	0.11	0.11	0.15	0.15	0.19	0.19	0.26	0.26	0.39	0.39
39	32×49	43/4	0.12	0.12	0.17	0.17	0.21	0.21	0.29	0.29	0.44	0.44
42	34×53	5	0.15	0.15	0.20	0.20	0.24	0.24	0.33	0.33	0.50	0.50
48	38×60	$51 / 2$	0.17	0.17	0.23	0.23	0.27	0.27	0.39	0.39
54	43×68	6	0.20	0.20	0.27	0.27	0.34	0.34	0.45	0.45
60	48×76	$61 / 2$	0.24	0.24	0.32	0.32	0.40	0.40	0.53	0.53
66	53×83	7	0.27	0.27	0.36	0.36	0.45	0.45	0.60	0.60
72	58×91	$71 / 2$	0.31	0.31	0.41	0.41	0.52	0.52	0.70	0.70	\ldots	\ldots
78	63×98	8	0.34	0.34	0.45	0.45	0.56	0.56	0.78	0.78	\ldots	\ldots
84	68×106	$81 / 2$	0.38	0.38	0.50	0.50	0.63	0.63	0.88	0.88
90	72×113	9
96	77×121	91/2	\ldots	\ldots
102	82×128	93/4	\ldots									
108	87×136	10
114	92×143	101/2	\ldots	\ldots	\ldots
120	97×151	11
132	106×166	12	\ldots	\ldots	\ldots
144	116×180	13		\ldots
Concrete strength ${ }^{B}$, psi					4000		4000		$\begin{aligned} & 18 \text { to } 66 \text { in. } \\ & 4000 \end{aligned}$		4000	
							$\begin{gathered} 72 \text { to } 84 \text { in. } \\ 5000 \end{gathered}$					

[^1]NOTICE: This standard has either been superseded and replaced by a new version or withdrawn. Please contact ASTM International (www.astm.org) for the latest information.

TABLE 2 Design Requirements for Vertical Elliptical Pipe ${ }^{A}$

Note 1—Test load in pounds per linear foot equals D-load \times inside span in feet.
Note 2-An inner and outer cage plus quadrant mats shall be permitted instead of double cage reinforcement. The area of such reinforcement shall be in accordance with Fig. 3.
Nоте 3-Single cage reinforcement, providing tension steel at the top, bottom, and springline, shall be permitted instead of double cage reinforcement. The area of such reinforcement shall be 112% of the tabulated inner cage area.
Note 4-An inner and outer cage plus a middle cage shall be permitted instead of double cage reinforcement. The area of such reinforcement shall be in accordance with Fig. 4.

Designated Diameter, Equivalent Round Size, in.	Designated Rise, in. \times Span, in.	Minimum Wall Thickness, in.	Reinforcement, in. ${ }^{2} / \mathrm{linear} \mathrm{ft}$									
			Class VE-II		Class VE-III				Class VE-V		Class VE-VI	
			D-Loads									
			$\begin{gathered} 0.01=1000 \\ U l t=1500 \end{gathered}$		$\begin{gathered} 0.01=1350 \\ \text { Ult }=2000 \end{gathered}$		$\begin{gathered} 0.01=2000 \\ \text { Ult }=3000 \end{gathered}$		$\begin{gathered} 0.01=3000 \\ \text { Ult }=3750 \end{gathered}$		$\begin{gathered} 0.01=4000 \\ \text { Ult }=5000 \end{gathered}$	
			$\begin{gathered} \text { In } \\ \text { Cage } \end{gathered}$	Out Cage	$\begin{aligned} & \text { In } \\ & \text { Cage } \end{aligned}$	Out Cage	In Cage	Out Cage	$\begin{aligned} & \text { In } \\ & \text { Cage } \end{aligned}$	Out Cage	In Cage	Out Cage
36	45×29	$41 / 2$	0.08	0.05	0.11	0.07	0.16	0.10	0.23	0.14	0.31	0.19
39	49×32	$43 / 4$	0.09	0.05	0.12	0.07	0.18	0.11	0.26	0.16	0.35	0.21
42	53×34	5	0.10	0.06	0.12	0.08	0.20	0.12	0.29	0.17	0.38	0.23
48	60×38	$51 / 2$	0.11	0.07	0.15	0.09	0.21	0.12	0.33	0.20	0.44	0.26
54	68×43	6	0.12	0.08	0.18	0.11	0.27	0.16	0.40	0.24	0.53	0.32
60	76×48	$61 / 2$	0.16	0.10	0.21	0.12	0.31	0.19	0.47	0.27
66	83×53	7	0.18	0.11	0.24	0.15	0.36	0.21	0.55	0.33
72	91×58	$71 / 2$	0.21	0.12	0.27	0.17	0.41	0.24	\ldots
78	98×63	8	0.23	0.14	0.31	0.19	0.47	0.27	. .	\ldots	\ldots	.
84	106×68	$81 / 2$	0.26	0.16	0.35	0.21	0.53	0.32
90	113×72	9
96	121×77	91/2	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	. \cdot.	\ldots	.	.
102	128×82	93/4		,	兂	. . .
108	136×87	10	. . .	\ldots
114	143×92	101/2	\ldots	\ldots	\ldots	\ldots
120	151×97	11
132	166×106	12					
144	180×116	13		\cdots								
Concrete strength ${ }^{B}$, psi			4000		4000		4000		5000		6000	

[^2]by an absorption test of the concrete from the wall of the pipe for each mix design that is used on an order; and by inspection of the finished pipe, including amount and placement of reinforcement, to determine its conformance with the accepted design and its freedom from defects.
5.1.3 When agreed upon by the owner and the manufacturer, any portion or any combination of the tests itemized in 5.1.1 or 5.1.2 may form the basis of acceptance.
5.2 Age for Acceptance-Pipe shall be considered ready for acceptance when they conform to the requirements as indicated by the specified tests.

6. Materials

6.1 The aggregate shall be so sized, graded, proportioned, and mixed with such proportions of portland cement, blended hydraulic cement, or portland cement and supplementary cementing materials, or admixtures, if used, or a combination thereof, and water to produce a homogeneous concrete mixture of such quality that the pipe will conform to the test and design requirements of this specification. In no case, however, shall the proportion of portland cement, blended hydraulic cement, or a combination of portland cement and supplementary cementing materials be less than $470 \mathrm{lb} / \mathrm{yd}^{3}$.

6.2 Cementitious Materials:

6.2.1 Cement-Cement shall conform to the requirements of Specification C150, or shall be portland blast-furnace slag
cement, or slag modified portland cement, or portlandpozzolan cement conforming to the requirements of Specification C595, except that the pozzolan constituent in the Type IP portland pozzolan cement shall be fly ash.
6.2.2 Ground Granulated Blast-Furnace Slag (GGBFS)— GGBFS shall conform to the requirements of Grade 100 or 120 of Specification C989.
6.2.3 Fly Ash-Fly ash shall conform to the requirements of Class F or Class C of Specification C618.
6.2.4 Allowable Combinations of Cementitious MaterialsThe combination of cementitious materials used in the concrete shall be one of the following:
6.2.4.1 Portland cement only,
6.2.4.2 Portland blast furnace slag cement only,
6.2.4.3 Slag modified portland cement only,
6.2.4.4 Portland pozzolan cement only,
6.2.4.5 A combination of portland cement and ground granulated blast-furnace slag,
6.2.4.6 A combination of portland cement and fly ash, or
6.2.4.7 A combination of portland cement, ground granulated blast-furnace slag (not to exceed 25% of the total cementitious weight) and fly ash (not to exceed 25% of the total cementitious weight.
6.3 Aggregates-Aggregates shall conform to Specification C33 except that the requirement for gradation shall not apply.

NOTICE: This standard has either been superseded and replaced by a new version or withdrawn. Please contact ASTM International (www.astm.org) for the latest information.
6.4 Admixtures and Blends-The following admixtures and blends are allowable:
6.4.1 Air-entraining admixture conforming to Specification C260;
6.4.2 Chemical admixture conforming to Specification C494/C494M;
6.4.3 Chemical admixture for use in producing flowing concrete conforming to Specification C1017/C1017M; and
6.4.4 Chemical admixture or blend approved by the owner.
6.5 Steel Reinforcement-Reinforcement shall consist of wire conforming to Specification A82/A82M or Specification A496/A496M; or of wire reinforcement conforming to Specification A185/A185M or Specification A497/A497M; or of bars conforming to Specification A36/A36M, Specification A615/A615M Grade 40 or 60, or Specification A706/A706M Grade 60.
6.6 Synthetic Fibers-Collated fibrillated virgin polypropylene fibers may be used, at the manufacturer's option, in concrete pipe as a nonstructural manufacturing material. Only Type III synthetic fibers designed and manufactured specifically for use in concrete and conforming to the requirements of Specification C1116 shall be accepted.

7. Design

7.1 Size and Shape-The standard sizes of elliptical pipe shall be as listed in Table 1 and Table 2. The internal shape for

Note 1-The total reinforcement area (Asi) of the inner cage plus the quadrant mat in Quadrants 1 and 2 shall not be less than that specified for the inner cage in Table 1.
Note 2-The total reinforcement area (Aso) of the outer cage plus the quadrant mat in Quadrants 3 and 4 shall not be less than that specified for the outer cage in Table 1.

Note 3-The reinforcement area ($\mathrm{A}^{\prime} \mathrm{si}$) of the inner cage in Quadrants 3 and 4 shall be not less than 25% of that specified for the inner cage in Table 1.
Note 4-The reinforcement area (A^{\prime} so) of the outer cage in Quadrants 1 and 2 shall be not less than 25% of that specified for the outer cage in Table 1.

FIG. 1 Quadrant Reinforcement, Horizontal Elliptical Pipe

Note 1—The total reinforcement area of the inner cage plus the middle cage shall not be less than that specified for the inner cage in Table 1.

Note 2-The total reinforcement area of the outer cage plus the middle cage shall not be less than that specified for the outer cage in Table 1.

FIG. 2 Horizontal Elliptical Pipe

Note 1—The total reinforcement area (Asi) of the inner cage plus the quadrant mat in Quadrants 1 and 2 shall not be less than that specified for the inner cage in Table 2.

Note 2-The total reinforcement area (Aso) of the outer cage plus the quadrant mat in Quadrants 3 and 4 shall not be less than that specified for the outer cage in Table 2.

Note 3-The reinforcement area (A^{\prime} si) of the inner cage in Quadrants 3 and 4 shall be not less than 25% of that specified for the inner cage in Table 2.

Note 4-The reinforcement area (A^{\prime} so) of the outer cage in Quadrants 1 and 2 shall be not less than 25% of that specified for the outer cage in Table 2.

FIG. 3 Quadrant Reinforcement, Vertical Elliptical Pipe
each size pipe shall be defined by the internal dimensions shown in Fig. 5, subject to the permissible variations of 12.1 .
7.2 Design Tables-The wall thickness, compressive strength of concrete, and the area of circumferential reinforcement shall be as prescribed in Table 1 and Table 2, subject to the provisions of 7.3 and Sections 11 and 12.
7.2.1 Footnotes to the tables herein are intended to be amplifications of the tabulated requirements and are to be considered applicable and binding as if they were contained in the body of the specification.

[^0]: ${ }^{1}$ This specification is under the jurisdiction of ASTM Committee C13 on Concrete Pipe and is the direct responsibility of Subcommittee C13.02 on Reinforced Sewer and Culvert Pipe.

 Current edition approved April 1, 2010. Published May 2010. Originally approved in 1963. Last previous edition approved in 2010 as C507-10. DOI: 10.1520/C0507-10A.
 ${ }^{2}$ For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM Standards volume information, refer to the standard's Document Summary page on the ASTM website.

[^1]: ${ }^{\text {A }}$ For sizes and loads beyond those shown in this table, pipe designs are available that make use of one or a combination of the following: shear steel, multiple cages, or thicker walls in accordance with the provisions of 7.3 .
 ${ }^{B}$ Concrete strength for designs with reinforcement tabulated. For modified or special designs, see 7.3.

[^2]: ${ }^{A}$ For sizes and loads beyond those shown in this table, pipe designs are available which make use of one or a combination of the following: shear steel, multiple cages, or thicker walls in accordance with the provisions of 7.3 .
 ${ }^{B}$ Concrete strength for designs with reinforcement tabulated. For modified or special designs, see 7.3.

