This document is not an ASTM standard and is intended only to provide the user of an ASTM standard an indication of what changes have been made to the previous version. Because it may not be technically possible to adequately depict all changes accurately, ASTM recommends that users consult prior editions as appropriate. In all cases only the current version of the standard as published by ASTM is to be considered the official document.

Designation:B172–01a (Reapproved 2007)^{€1} Designation: B172 – 10

Standard Specification for Rope-Lay-Stranded Copper Conductors Having Bunch-Stranded Members, for Electrical Conductors¹

This standard is issued under the fixed designation B172; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the Department of Defense.

e¹Note—Table1 was editorially corrected in March 2007.

1. Scope

1.1 This specification covers bare rope-lay-stranded conductors having bunch-stranded members made from round copper wires, either uncoated or coated with tin, lead, or lead-alloy for use as electrical conductors (Explanatory Notes 1 and 2).

1.2 Coated wires shall include only those wires with finished diameters and densities substantially equal to the respective diameters and densities of uncoated wires.

1.3 The values stated in inch-pound or SI units are to be regarded separately as standard. Each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the specification. For conductor sizes designated by AWG or kcmil, the requirements in SI units have been numerically converted from corresponding values, stated or derived, in inch-pound units. For conductor sizes designated by SI units only, the requirements are stated or derived in SI units.

1.3.1 For density, resistivity, and temperature, the values stated in SI units are to be regarded as standard.

2. Referenced Documents

2.1 The following documents of the issue in effect at the time of reference form a part of this specification to the extent referenced herein:

2.2 ASTM Standards:²

B3 Specification for Soft or Annealed Copper Wire 1917 Preview

B33 Specification for Tin-Coated Soft or Annealed Copper Wire for Electrical Purposes

B173 Specification for Rope-Lay-Stranded Copper Conductors Having Concentric-Stranded Members, for Electrical Conductors ASTM B172-10

B189 Specification for Lead-Coated and Lead-Alloy-Coated Soft Copper Wire for Electrical Purposes

B193 Test Method for Resistivity of Electrical Conductor Materials

B263 Test Method for Determination of Cross-Sectional Area of Stranded Conductors

B354 Terminology Relating to Uninsulated Metallic Electrical Conductors

2.3 American National Standard:

ANSI C42.35 Definitions of Electrical Terms³

3. Classification

3.1 For the purpose of this specification rope-lay-stranded conductors having bunch-stranded members are classifed as follows: 3.1.1 *Class I*—Conductors consisting of wires 0.0201-in. (0.511-mm) diameter (No. 24 AWG) to produce rope-lay-stranded conductors up to 2 000 000 cmil (1013 mm²) in total cross-sectional area. (Typical use is for special apparatus conductor.)

3.1.2 *Class K*—Conductors consisting of wires 0.0100-in. (0.254-mm) diameter (No. 30 AWG) to produce rope-lay-stranded conductors up to 1 000 000 cmil (507 mm²) in total cross-sectional area. (Typical use is for special portable cord and conductors.)

Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.

¹ This specification is under the jurisdiction of ASTM Committee B01 on Electrical Conductors and is the direct responsibility of Subcommittee B01.04 on Conductors of Copper and Copper Alloys.

Current edition approved March 15, 2007. Published April 2007. Originally approved in 1942 to replace portions of B158–41 T. Last previous edition approved in 2001 as B172–01a. DOI: 10.1520/B0172-01AR07E01.

Current edition approved April 1, 2010. Published May 2010. Originally approved in 1942 to replace portions of B158–41 T. Last previous edition approved in 2007 as B172 – 01a (2007)^{e1}. DOI: 10.1520/B0172-10.

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM Standards volume information, refer to the standard's Document Summary page on the ASTM website.

³ Available from American National Standards Institute (ANSI), 25 W. 43rd St., 4th Floor, New York, NY 10036, http://www.ansi.org.

🖽 B172 – 10

3.1.3 *Class M*—Conductors consisting of wires 0.0063-in. (0.160-mm) diameter (No. 34 AWG) to produce rope-lay-stranded conductors up to 1 000 000 cmil (507 mm²) in total cross-sectional area. (Typical use is for welding conductors.)

4. Ordering Information

4.1 Orders for material under this specification shall include the following information:

- 4.1.1 Quantity of each size and class,
- 4.1.2 Conductor size: circular-mil area or AWG (see 7.1),
- 4.1.3 Class (Section 4 and Table 1Tables 1-3),
- 4.1.4 Whether coated or uncoated; if coated, designate type of coating (see 11.1),
- 4.1.5 Details of special-purpose lays, if required (see 6.2, 6.3, and Explanatory Note 3), and Explanatory Note 3),
- 4.1.6 Package size (see 15.1),
- 4.1.7 Special package marking, if required (Section 14),
- 4.1.8 Lagging, if required (see 15.2), and
- 4.1.9 Place of inspection (Section 13).

5. Joints

5.1 Necessary joints in wires or in groups of wires shall be made in accordance with accepted commercial practice, taking into account the size of the wire or group of wires as related to the size of the entire conductor.

5.2 Bunch-stranded members or rope-stranded members forming the completed conductor may be joined as a unit by soldering, brazing, or welding.

5.3 Joints shall be so constructed and so disposed throughout the conductor that the diameter or configuration of the completed conductor is not substantially affected, and so that the flexibility of the completed conductor is not adversely affected.

6. Lay (Explanatory Note 3) (Explanatory Note 3)

6.1 Conductors of the same size and description furnished on one order shall have the same lay.

6.2 The length of lay of the outer layer of the rope-lay-stranded conductor shall not be less than 8 nor more than 16 times the outside diameter of the completed conductor. The length of lay of the other layers shall be at the option of the manufacturer unless specifically agreed upon. The direction of lay of the outer layer shall be left-hand, unless the direction of lay is specified otherwise by the purchaser. The direction of lay of the other layers shall be reversed in successive layers, unless otherwise agreed upon by the manufacturer and the purchaser.

6.3 The length of lay of the bunch-stranded and rope-stranded members shall be not more than 30 times the outside diameter of the member. The direction of lay shall be at the option of the manufacturer unless specifically agreed upon.

6.4 In very flexible conductors, such as welding conductor, the direction of lay of the stranded members forming rope-lay-stranded conductor may be in the same, rather than in reversed, directions as prescribed above.

7. Construction 7. Construction 4. Advantage of the second standards and the second standards an

7.1 The area of cross section, and the number and diameter of wires for a variety of strand constructions in general use are shown in Table 1-Tables 1-3.

7.2 The number of individual wires may vary slightly from those shown in Table <u>1</u>Tables <u>1-3</u>, provided the nominal cross-sectional area of the conductor at any point be not less than that specified.

8. Physical and Electrical Tests

8.1 Tests for the electrical properties of wires composing conductors made from soft or annealed copper wire, bare or coated, shall be made before stranding.

8.2 Tests for the physical properties of soft or annealed copper wire, bare or coated, may be made upon the wires before stranding or upon wires removed from the completed stranded conductors, but need not be made upon both. Care shall be taken to avoid mechanical injury and stretching when removing wires from the conductor for the purpose of testing.

8.3 The physical properties of wire when tested before stranding shall conform to the applicable requirements of 11.1.

8.4 The physical properties of wires removed from the completed stranded conductor shall be permitted to vary from the applicable requirements of 11.1 by the following amounts (Explanatory Note 4):

8.4.1 Average of Results Obtained on All Wires Tested—The percent minimum elongation may be reduced by the value of 5 % from the values required for unstranded wires as specified by Specifications B3, B33, or B189, as applicable. For example, where the unstranded wire specification requires minimum elongation of 30 %, wire of that material removed from Specification B172 stranded conductor shall meet a minimum elongation value of 25 %.

8.4.2 *Results Obtained on Individual Wires*—The percent minimum elongation may be reduced by the value of 15 % from the values required for unstranded wires as specified by Specifications B3, B33, or B189, as applicable. For example, where the unstranded wire specification requires minimum elongation of 30 %, wire of that material removed from Specification B172 stranded conductor shall meet a minimum elongation value of 15 %. If the reduction results in minimum elongation of less than 5 %, a minimum of 5 % shall apply.

∰ B172 – 10

TABLE 1 Construction Requirements of Class I	I Rope-Lay Stranded Copper Conductors Having Bunch- Stranded Members ^A
--	---

Area of	Class K	Class N	4												
Cross	Wire														
Section	Diameter	f													
	0.0201														
	ln. (0.511	٨n	provimato												
	(0.511 mm)	Ab	Mass ^B			Unc	coated Conner			Coat	ted Conner				
			11111111			0110				000			-		
			Wire						14/11/1-		<u>°C</u>				
			Diameter						₩ <u>ivia</u>						
			0.04 <u>2001</u>				Non	ninal		nceter		ApprNo	eiminal	Mar	ximum
			(0. 2 5411		Appro	ximate	dc res	istance	@ 20-0063 in			dc resistance		dc resis B tance	
Area of Cros	s Section	ction mm)		Ma	ss ^B	@ 2	@ 20°C		(0.160 mm)		@ 20°C		@ 20°C		
emil	mm ² t	-	Nominal	Strand	lb/	ka/		Nominal	Strand	lb./	ka / km		Nominal	Strand	
CITIII		Size	Number	Construction	1000 ft	km		Numb@conf	struction ^C	² 1000ft	Kg / Kill		Nurfilmers	truction ^C	107 100011.1
		AWG	of Wires	e				Wires					of Wires		
omil	mm ²	Nomina	L Strand	lb/	ka/		– Ohm / kft	Ohm / km	Ohm /	Ohm /		- Ohm / kft	Ohm /	Ohm /	Ohm / km
	<u></u>	Numbe	nstruction	1000 ft.	km				kft	km			km	kft	
		of Wires	A by B	1000 111	<u></u>				<u></u>	<u></u>			<u></u>		
			by C ^C												
2 000 000	1013		4921	19 hv 7 hv 37	6439	0583		_			_				
2 000 000	1013		4921	19 by 7 by 37	6439	9583		0.00555	0.0182	0.00566	0.0186		0.00577	0.0189	0.00589 (
1 900 000	963		4788	19 by 7 by 36	6265	9324									
<u>1 900 000</u>	963	<u></u>	4788	19 by 7 by 36	6265	9324		0.00584	0.0192	0.00596	0.0196		0.00607	0.0199	0.00619
1 800 000	912		4522	19 by 7 by 34	5917	8806									
1 800 000	912	<u></u>	4522	<u>19 by 7 by 34</u>	5917	8806		0.00616	0.0202	0.00628	0.0206		0.00641	0.0210	0.00654
1 750 000	887		4389	19 by 7 by 33	5743	8547									····
1 750 000	887	<u>···</u>	4389	19 by 7 by 33	5743	8547		0.00634	0.0208	0.00647	0.0212		0.00659	0.0216	0.00672
1 700 000	861		4256	19 by 7 by 32	5569	8288		0.00653	0.0214	0.00666	0.0218		0.00679	0.0223	0.00693
1 600 000	811		3990	19 by 7 by 30	5221	7770		<u>0.00000</u>	<u></u>	<u>0.00000</u>	<u>0.0210</u>		<u>0.00075</u>	<u>0.0220</u>	<u>0.00000</u>
1 600 000	811		3990	19 by 7 by 30	5221	7770		0.00694	0.0228	0.00708	0.0233		0.00721	0.0237	0.00735
1 500 000	760		3724	19 by 7 by 28	4873	7252									
1 500 000	760	<u></u>	3724	19 by 7 by 28	4873	7252		0.00740	0.0243	0.00755	0.0248		0.00769	0.0252	0.00784
1 400 000	709		3458	19 by 7 by 26	4525	6734									
1 200 000	709	<u></u>	3458	19 by 7 by 26	4525	6734		0.00793	0.0260	0.00809	0.0265		0.00824	0.0270	0.00840
1 300 000	659		3192	19 by 7 by 24	4177	6216		0.00854	0.0280	0.00871	0.0286		0.00888	0.0291	0.00906
1 250 000	633	<u></u>	3059	19 by 7 by 23	4003	5957									<u></u>
1 250 000	633		3059	19 by 7 by 23	4003	5957		0.00888	0.0291	0.00906	0.0297		0.00923	0.0303	0.00941
1 200 000	608		2926	19 by 7 by 22	3829	5698		0							
1 200 000	608	<u></u>	2926	<u>19 by 7 by 22</u>	3829	5698		<u>0.00925</u>	0.0303	0.00944	0.0309		0.00962	0.0316	0.00981
1 100 000	/sta 55/ a	rd s:i te	2793	19 by 7 by 21	3655	5439		63 4 1 1	b4	72 77 24	e0		72		
1 000 000	507	<u></u>	2793	19 by 7 by 21	3000	2439		10 1097 1	$\frac{0.0331}{7 \text{ by } 20}$	$\frac{0.0103}{2070}$	4960		0.0105	<u>0.0344</u>	2220
1 000 000	507		2527	19 by 7 by 19	3307	4921		0 0111	0 0364	0 0113	0.0371		0.0115	0 0379	0.0117 (
900 000	456		2261	19 by 7 by 17	2959	4403		906 5 7 k	37 by 35	5 2936	4369		22 63 1b	v 7 by 53	2909
900 000	456	<u></u>	2261	19 by 7 by 17	2959	4403		0.0123	0.0405	0.0125	0.0413		0.0128	0.0421	0.0131
800 000	405		1995	19 by 7 by 15	2611	3885		79809 k	y 7 by 6 0	2585	3846		20 66 95	y 7 by 4 7	2580
800 000	405	<u></u>	1995	<u>19 by 7 by 15</u>	2611	3885		0.0139	0.0455	0.0142	0.0464		0.0144	0.0473	0.0147
	380		1862	19 by / by 14	2436	3626		75819 t) y / by 5/	² 2455	3654		18 6880	y / by 44	2415
750 000	380	····	1700	19 by 7 by 14	2430	3020		<u>0.0148</u> 60160 k	0.0485	0.0151	2222		17 607	<u>0.0505</u> v 7 by 41	<u>0.0157</u>
700 000	355		1729	19 by 7 by 13	2262	3367		0.0159	0.0520	0.0162	0.0530		0.0165	0.0541	0.0168
650 000	329		1596	19 by 7 by 12	2088	3108		65179 k	by 7 by 49	2111	3141		16 826	7 by 38	2086
650 000	329	<u></u>	1596	19 by 7 by 12	2088	3108		0.0171	0.0560	0.0174	0.0571		0.0178	0.0583	0.0182
600 000	304		1470	7 by 7 by 30	1906	2836		59859 k	y 7 by 45	1938	2885		14 94 5	y 7 by 35	1921
600 000	304	<u></u>	1470	7 by 7 by 30	1906	2836		0.0183	0.0601	0.0187	<u>0.0613</u>		0.0191	0.0625	0.0195
- <u>550 000</u>	279 070		1372	- 7 by 7 by 28	1779	2647		545 3 9 t	by 7 by 41	+ 1766	2628		13 664b	y 7 by 32	1757
00000	279	····	1372	7 by 7 by 28	1599	2047		<u>0.0200</u>	0.0000 2 vd 7 vc	$\frac{0.0204}{1627}$	0.0009		10.0208	$\frac{0.0682}{7.69.40}$	$\frac{0.0212}{1621}$
500 000	253		1225	7 by 7 by 25	1588	2363		0.0220	0.0721	0.0224	0.0735		0.0229	0.0750	0.0234 (
450 000	228		1127	-7 by 7 by 23	1461	2174		452219 t	307 by 34	+ 1465	2180		11 396b	v 7 bv 44	1465
450 000	228		1127	7 by 7 by 23	1461	2174		0.0244	0.0802	0.0249	0.0817		0.0254	0.0834	0.0259
-400 000	203		980	7 by 7 by 20	1270	1891		39909 k	y 7 by 30) 1292	1923		10 3071b	y 7 by 39	1298
400 000	203	<u></u>	980	7 by 7 by 20	1270	1891		0.0275	0.0902	0.0281	0.0920		0.0286	0.0938	0.0292
-350 000	177		882	- 7 by 7 by 18	1143	1701		34589 t	3y 7 by 2€	3 1120	1667		8896 b	y 7 by 3 4	1132
350 000	152	<u>···</u>	882	7 by 7 by 18 7 by 7 by 15	052	1/01		<u>0.0314</u> 20907 k	$\frac{0.103}{0.103}$	0.0320	1427		<u>0.0327</u>	$\frac{0.107}{7.6457}$	0.0334
300 000	152		735	7 by 7 by 15	900	1410		0.0366	0 120	0.0373	0 122		0.0381	0 125	0.0389
250 000	1 <u>32</u> 127	<u></u>	637	<u>7 by 7 by 13</u>	826	1229		24997 k	3.120 3v 7 bv 5 1	802	1193		6389 h	v <u>7 bv 4</u> 8	-821
250 000	127		637	7 by 7 by 13	826	1229		0.0440	0.144	0.0449	0.147		0.0457	0.150	0.0466
211 600	107	0000	532	19 by 28	683	1017		21077 k	y 7 by 4 3	676	1006		5329 b	y 7 by 4 0	-684
211 600	107	0000	<u>532</u>	19 by 28	683	1017		0.0515	0.169	0.0525	0.172		0.0536	0.176	0.0546
	85.0	000) 418	19 by 22	537	799		16667 k	by 7 by 3 4	+ 535	795		42 59 b	y 7 by 32	-547
167 800	85	000	$\frac{1}{2} \frac{418}{242}$	19 by 22	537	799		0.0649	<u>0.213</u>	0.0662	0.217		0.0675	<u>0.221</u>	0.0689
- 133 100 133 100	67.4 67.4	0 (7 342 1 3/12	19 DY 18 19 by 18	439 430	054 654	2	13237 t	7 DY 27 TU 1 DY 27	- 424 0.0834	0.273		0.0851	y / by 25 0 270	- 427 0.0868
105 600	53.5	<u>00</u> 4	- <u>266</u>	19 by 10	342	508	3	1064	19 hv 56	338	503		26476 h	v 7 bv 54	-337
105 600	53.5	(266	19 by 14	342	508		0.103	0.338	0.105	0.345		0.107	0.352	0.109
83 690	42.4	4	1 210	7 by 30	267	397		836	19 by 44	266	395		2107 b	y 7 by 4 3	-268

Coated Copper	<u>Maximum dc</u> resistance @ 20°C	$\begin{array}{c} 0.0399\\ 0.0443\\ 0.0443\\ 0.0664\\ 0.0664\\ 0.0664\\ 0.0664\\ 0.0726\\ 0.0798\\ 0.0798\\ 0.0798\\ 0.0744\\ 0.114\\ 0.117\\ 0.147\\ 0.1228\\ 0.187\\ 0.1690\\ 0.144\\ 0.0228\\ 0.028\\ 0.028\\ 0.0228$	uctions shown	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	(where used)	Iope-stialiue
		$\begin{array}{c} 0.0121\\ 0.0135\\ 0.0152\\ 0.0162\\ 0.0187\\ 0.0187\\ 0.0187\\ 0.0243\\ 0.0243\\ 0.0243\\ 0.0243\\ 0.0243\\ 0.0243\\ 0.0243\\ 0.0243\\ 0.0283\\ 0.0283\\ 0.0269\\ 0.0117\\ 0.0905\\ 0.0117\\ 0.0283\\ 0.0283\\ 0.0283\\ 0.0112\\ 0.0283\\ 0.0283\\ 0.0117\\ 0.0202\\ 0.0117\\ 0.0202\\ 0.0117\\ 0.0005\\ 0.0117\\ 0.0005\\ 0.0117\\ 0.0202\\ 0.0117\\ 0.0005\\ 0.0117\\ 0.0005\\ 0.0117\\ 0.0005\\ 0.0112\\ 0.0005\\ 0.0115\\ 0.0005\\ 0.0112\\ 0.0005\\ 0.0112\\ 0.0005\\ 0.0112\\ 0.0005\\ 0.0112\\ 0.0005\\ 0.0112\\ 0.0005\\ 0.0005\\ 0.0112\\ 0.0005\\$	is. The constru ditional area t	מווטיומ מילי	ember, and A	
	Nominal dc resistance @ 20°C	0.0331 0.0434 0.0439 0.0489 0.0651 0.0661 0.0661 0.0661 0.0661 0.0661 0.0661 0.0661 0.0661 0.0782 0.0771 0.0771 0.0782 0.0782 0.0782 0.0771 0.0771 0.0782 0.0771 0.0771 0.0771 0.0771 0.0771 0.0771 0.0771 0.0771 0.0771 0.0771 0.0771 0.0771 0.0771 0.0771 0.0772 0.0771 0.0771 0.0772 0.0772 0.0771 0.0771 0.0771 0.0771 0.0771 0.0772 0.0771 0.0771 0.0771 0.0772 0.0771 0.0771 0.0772 0.0772 0.0772 0.0772 0.0771 0.07720 0.07720 0.07720 0.07720 0.07720000000000	fic application to provide ad	2222	be stranded m	
		$\begin{array}{c} 0.0119\\ 0.0132\\ 0.0132\\ 0.0149\\ 0.0170\\ 0.0170\\ 0.0170\\ 0.0199\\ 0.0170\\ 0.0170\\ 0.0199\\ 0.0170\\ 0.0170\\ 0.0217\\ 0.0217\\ 0.0217\\ 0.0217\\ 0.0017\\ 0.0028\\ 0.0017\\ 0.0028\\ 0.0017\\ 0.0028\\ 0.0017\\ 0.0017\\ 0.0028\\ 0.0017\\ 0.0017\\ 0.0028\\ 0.0017\\ 0.0018\\ 0.0017\\ 0.0017\\ 0.0018\\ 0.0017\\ 0.0017\\ 0.0018\\ 0.0017\\ 0.0018\\ 0.0017\\ 0.0018\\ 0.0017\\ 0.0018\\ 0.0017\\ 0.0018\\ 0.0017\\ 0.0017\\ 0.0018\\ 0.0017\\ 0.0018\\ 0.0017\\ 0.0017\\ 0.0018\\ 0.0017\\ 0.0018\\ 0.0017\\ 0.0018\\ 0.0017\\ 0.0018\\ 0.0017\\ 0.0018\\ 0.0018\\ 0.0017\\ 0.0018\\ 0.0018\\ 0.0017\\ 0.0018\\$	able for speci	Note 6.	e up each rop	IIIUICALES A CC
Uncoated Copper	<u>Maximum dc</u> resistance @ 20°C	$\begin{array}{c} 0.0371\\ 0.0413\\ 0.0464\\ 0.0464\\ 0.0465\\ 0.0465\\ 0.0675\\ 0.0571\\ 0.0571\\ 0.0571\\ 0.0571\\ 0.057\\ 0.057\\ 0.0531\\ 0.0531\\ 0.057\\ 0.0531\\ 0.0743\\ 0.057\\ 0.0531\\ 0.0743\\ 0.0531\\ 0.0743\\ 0.0531\\ 0.0531\\ 0.0531\\ 0.0633\\ 0.0531\\ 0.0531\\ 0.0532\\ 0.0531\\ 0.0$	may be desira	Explanatory	s which make	i ze ku i ku e
		0.0113 0.0125 0.0162 0.0162 0.0162 0.0162 0.0168 0.0168 0.0268 0.0268 0.0268 0.0268 0.0268 0.0268 0.0268 0.0268 0.0268 0.03730 0.03730 0.03730 0.03730 0.03750 0.03750 0.03750 0.03750 0	ctions which n	ents listed in	ded member	i example, i
	<u>Nominal dc</u> resistance @ 20°C	0.0364 0.0405 0.0405 0.0405 0.0405 0.0405 0.0560 0.0560 0.0560 0.0728 0.0560 0.0728 0.0570 0.1141 0.171 0.171 0.171 0.171 0.171 0.171 0.215 0.0060 0.00000 0.00000 0.00000 0.00000 0.000000	other construction	nding increme	f bunch-stran	
		0.0111 0.0123 0.0139 0.0148 0.0148 0.0177 0.0222 0.0227 0.0227 0.0227 0.0164 0.0227 0.0225 0.0225 0.0225 0.0225 0.0255 0.0255 0.0255 0.0255 0.0255 0.00550 0.00550 0.00550 0.00550 0.00550 0.00550 0.005500000000	ole preclude d	standard stra	the number o	obe-silalita
ie Mass ^B	Kg/km	4869 4369 33546 33546 33546 33557 1923 33557 197 315 3355 335 335 335 335 335 335 335 33	d that this tak	d upon the s	ember, B is t	
Approximate	Lb/1000 ft	01-2218 MTSA 83272 83273 84588 8308 840 8388 840 840 840 840 840 840 840 840 840 840	is not intende	lues are base	h-stranded m	
	<u>Strand Construction</u> <u>A by B by C^C</u>	$\begin{array}{c} 37 \ by \ 7 \ by \ 35 \\ 19 \ by \ 7 \ by \ 57 \\ 19 \ by \ 7 \ by \ 57 \\ 19 \ by \ 7 \ by \ 57 \\ 19 \ by \ 7 \ by \ 52 \\ 19 \ by \ 7 \ by \ 41 \\ 19 \ by \ 7 \ by \ 38 \\ 19 \ by \ 7 \ by \ 38 \\ 19 \ by \ 7 \ by \ 38 \\ 19 \ by \ 7 \ by \ 38 \\ 19 \ by \ 7 \ by \ 31 \\ 7 \ by \ 7 \ by \ 31 \\ 7 \ by \ 28 \\ 7 \ by \ 28 \\ 19 \ by \ 28 \\ 7 \ by \ 28 \\ 7 \ by \ 28 \\ 7 \ by \ 38 \\ 7 \ by \ 38 \\ 7 \ by \ 28 \\ 7 \ by \ 38 \\ 7 \ by \ 28 \\ 7 \ by \ 38 \\ 7 \ by \ 28 \ by $	e used in the industry. It i ctor approximately of the	proximate. The mass va	er of wires in each bunc	ers with 32 wires each.
<u>Wire Diameter</u> 0.0100 In. (0.254 mm)	/G Nominal Number of Wires	10101 9065 9065 75880 8517 85517 1055 10665 107 2100 2336 107 2100 2336 107 2100 2336 107 2100 2100 2100 2100 2100 2100 2100	le are typical of thos	essing. ted conductor are ap	where C is the number V	Inch-stranded memb
Size AW	Size AV	וסושואושועו¥ושועודוס 8 8 8	wn in this tat	sequent proc	A by B by C	onsist of 7 bu
ss Section	mm ²	507 456 456 3355 3355 3355 3355 3355 107 107 107 105 3356 107 107 107 107 105 3356 107 107 105 105 105 107 107 105 107 107 107 107 107 107 107 107 107 107	tructions sho	n during sub-	Distruction -	in of which cu
Area of Cro	cmi	$\begin{array}{r} 1,000,000\\ 800,000\\ 750,000\\ 750,000\\ 750,000\\ 750,000\\ 600,000\\ 650,000\\ 600,000\\ 600,000\\ 600,000\\ 600,000\\ 167,800\\ 167,800\\ 167,800\\ 167,800\\ 167,800\\ 167,800\\ 103,000\\ 167,800\\ 16510\\ 13,090\\ 20,200\\ 20,200\\ 20,200\\ 20,200\\ 13,090\\ 13,090\\ 13,090\\ 13,090\\ 13,090\\ 13,090\\ 13,090\\ 13,090\\ 13,090\\ 13,090\\ 13,090\\ 13,090\\ 13,090\\ 13,090\\ 13,090\\ 13,090\\ 13,090\\ 13,090\\ 10,000\\ 10$	A The cons provide for fin	for draw-down B Values fo	C Strand co	members eac

TABLE 2 Construction Requirements of Class K Rope-Lay Stranded Copper Conductors Having Bunch Stranded Members⁴

4

∰ B172 – 10