Standard Specification for Rope-Lay-Stranded Copper Conductors Having BunchStranded Members, for Electrical Conductors ${ }^{1}$

This standard is issued under the fixed designation B172; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the Department of Defense.
ε^{1} Note-Table1 was editorially correeted in Mareh 2007.

1. Scope

1.1 This specification covers bare rope-lay-stranded conductors having bunch-stranded members made from round copper wires, either uncoated or coated with tin, lead, or lead-alloy for use as electrical conductors (Explanatory Notes 1 and 2).
1.2 Coated wires shall include only those wires with finished diameters and densities substantially equal to the respective diameters and densities of uncoated wires.
1.3 The values stated in inch-pound or SI units are to be regarded separately as standard. Each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the specification. For conductor sizes designated by AWG or kcmil, the requirements in SI units have been numerically converted from corresponding values, stated or derived, in inch-pound units. For conductor sizes designated by SI units only, the requirements are stated or derived in SI units.
1.3.1 For density, resistivity, and temperature, the values stated in SI units are to be regarded as standard.

2. Referenced Documents

2.1 The following documents of the issue in effect at the time of reference form a part of this specification to the extent referenced herein:

2.2 ASTM Standards. ${ }^{2}$

B3 Specification for Soft or Annealed Copper Wire
B33 Specification for Tin-Coated Soft or Annealed Copper Wire for Electrical Purposes
B173 Specification for Rope-Lay-Stranded Copper Conductors Having Concentric-Stranded Members, for Electrical Conductors
B189 Specification for Lead-Coated and Lead-Alloy-Coated Soft Copper Wire for Electrical Purposes
B193 Test Method for Resistivity of Electrical Conductor Materials
B263 Test Method for Determination of Cross-Sectional Area of Stranded Conductors
B354 Terminology Relating to Uninsulated Metallic Electrical Conductors
2.3 American National Standard:

ANSI C42.35 Definitions of Electrical Terms ${ }^{3}$

3. Classification

3.1 For the purpose of this specification rope-lay-stranded conductors having bunch-stranded members are classifed as follows:
3.1.1 Class I-Conductors consisting of wires 0.0201-in. ($0.511-\mathrm{mm}$) diameter (No. 24 AWG) to produce rope-lay-stranded conductors up to $2000000 \mathrm{cmil}\left(1013 \mathrm{~mm}^{2}\right)$ in total cross-sectional area. (Typical use is for special apparatus conductor.)
3.1.2 Class K - Conductors consisting of wires $0.0100-\mathrm{in}$. ($0.254-\mathrm{mm}$) diameter (No. 30 AWG) to produce rope-lay-stranded conductors up to $1000000 \mathrm{cmil}\left(507 \mathrm{~mm}^{2}\right)$ in total cross-sectional area. (Typical use is for special portable cord and conductors.)

[^0]3.1.3 Class M-Conductors consisting of wires $0.0063-\mathrm{in}$. ($0.160-\mathrm{mm}$) diameter (No. 34 AWG) to produce rope-lay-stranded conductors up to $1000000 \mathrm{cmil}\left(507 \mathrm{~mm}^{2}\right)$ in total cross-sectional area. (Typical use is for welding conductors.)

4. Ordering Information

4.1 Orders for material under this specification shall include the following information:
4.1.1 Quantity of each size and class,
4.1.2 Conductor size: circular-mil area or AWG (see 7.1),

- 4.1.3 Class (Section 4 and Table 1 Tables 1-3),
4.1.4 Whether coated or uncoated; if coated, designate type of coating (see 11.1),
- 4.1.5 Details of special-purpose lays, if required (see 6.2, 6.3, and Explanatory Note 3), and Explanatory Note 3),
4.1.6 Package size (see 15.1),
4.1.7 Special package marking, if required (Section 14),
4.1.8 Lagging, if required (see 15.2), and
4.1.9 Place of inspection (Section 13).

5. Joints

5.1 Necessary joints in wires or in groups of wires shall be made in accordance with accepted commercial practice, taking into account the size of the wire or group of wires as related to the size of the entire conductor.
5.2 Bunch-stranded members or rope-stranded members forming the completed conductor may be joined as a unit by soldering, brazing, or welding.
5.3 Joints shall be so constructed and so disposed throughout the conductor that the diameter or configuration of the completed conductor is not substantially affected, and so that the flexibility of the completed conductor is not adversely affected.

6. Lay (Explanatory Note 3)-(Explanatory Note 3)

6.1 Conductors of the same size and description furnished on one order shall have the same lay.
6.2 The length of lay of the outer layer of the rope-lay-stranded conductor shall not be less than 8 nor more than 16 times the outside diameter of the completed conductor. The length of lay of the other layers shall be at the option of the manufacturer unless specifically agreed upon. The direction of lay of the outer layer shall be left-hand, unless the direction of lay is specified otherwise by the purchaser. The direction of lay of the other layers shall be reversed in successive layers, unless otherwise agreed upon by the manufacturer and the purchaser.
6.3 The length of lay of the bunch-stranded and rope-stranded members shall be not more than 30 times the outside diameter of the member. The direction of lay shall be at the option of the manufacturer unless specifically agreed upon.
6.4 In very flexible conductors, such as welding conductor, the direction of lay of the stranded members forming rope-lay-stranded conductor may be in the same, rather than in reversed, directions as prescribed above.

7. Construction

7.1 The area of cross section, and the number and diameter of wires for a variety of strand constructions in general use are shown in Fable 1Tables 1-3.
7.2 The number of individual wires may vary slightly from those shown in Fable $1 \underline{\text { Tables } 1-3}$, provided the nominal cross-sectional area of the conductor at any point be not less than that specified.

8. Physical and Electrical Tests

8.1 Tests for the electrical properties of wires composing conductors made from soft or annealed copper wire, bare or coated, shall be made before stranding.
8.2 Tests for the physical properties of soft or annealed copper wire, bare or coated, may be made upon the wires before stranding or upon wires removed from the completed stranded conductors, but need not be made upon both. Care shall be taken to avoid mechanical injury and stretching when removing wires from the conductor for the purpose of testing.
8.3 The physical properties of wire when tested before stranding shall conform to the applicable requirements of 11.1.
8.4 The physical properties of wires removed from the completed stranded conductor shall be permitted to vary from the applicable requirements of 11.1 by the following amounts (Explanatory Note 4):
8.4.1 Average of Results Obtained on All Wires Tested-The percent minimum elongation may be reduced by the value of 5% from the values required for unstranded wires as specified by Specifications B3, B33, or B189, as applicable. For example, where the unstranded wire specification requires minimum elongation of 30%, wire of that material removed from Specification B172 stranded conductor shall meet a minimum elongation value of 25%.
8.4.2 Results Obtained on Individual Wires-The percent minimum elongation may be reduced by the value of 15% from the values required for unstranded wires as specified by Specifications B3, B33, or B189, as applicable. For example, where the unstranded wire specification requires minimum elongation of 30%, wire of that material removed from Specification B172 stranded conductor shall meet a minimum elongation value of 15%. If the reduction results in minimum elongation of less than 5%, a minimum of 5% shall apply.

TABLE 1 Construction Requirements of Class I Rope-Lay Stranded Copper Conductors Having Bunch- Stranded Members ${ }^{A}$

[^0]: ${ }^{1}$ This specification is under the jurisdiction of ASTM Committee B01 on Electrical Conductors and is the direct responsibility of Subcommittee B01.04 on Conductors of Copper and Copper Alloys.

 Eurrent edition approved Mareh 15, 2007. Published April 2007. Originally approved in 1942 to replace pertions of B158-41 T. Last previets edition approved in 2004 as B172-01a. DOF. 10.1520/B0172-01AR07E01.

 Current edition approved April 1, 2010. Published May 2010. Originally approved in 1942 to replace portions of B158-41 T. Last previous edition approved in 2007 as B172-01a (2007) ${ }^{\varepsilon 1}$. DOI: 10.1520/B0172-10.
 ${ }^{2}$ For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM Standards volume information, refer to the standard's Document Summary page on the ASTM website.
 ${ }^{3}$ Available from American National Standards Institute (ANSI), 25 W. 43rd St., 4th Floor, New York, NY 10036, http://www.ansi.org.

