

## SLOVENSKI STANDARD oSIST prEN ISO 23977-1:2021

01-september-2021

## Polimerni materiali - Določanje aerobne biorazgradljivosti polimernih materialov, izpostavljenih morski vodi - 1. del: Metoda z analizo sproščenega ogljikovega dioksida (ISO 23977-1:2020)

Plastics - Determination of the aerobic biodegradation of plastic materials exposed to seawater - Part 1: Method by analysis of evolved carbon dioxide (ISO 23977-1:2020)

Kunststoffe - Bestimmung des aeroben Bioabbaus von Meerwasser ausgesetzten Kunststoff-Materialien - Teil 1: Verfahren mittels Analyse des freigesetzten Kohlenstoffdioxids (ISO 23977 1:2020) dards.iteh.ai)

Plastiques - Détermination de la biodégradation aéroble des matières plastiques exposées à l'eau de mer - Partie 1. Méthode par analyse du dioxyde de carbone dégagé (ISO 23977-1:2020)

Ta slovenski standard je istoveten z: prEN ISO 23977-1

#### ICS:

| 13.020.40 | Onesnaževanje, nadzor nad<br>onesnaževanjem in<br>ohranjanje | Pollution, pollution control and conservation |
|-----------|--------------------------------------------------------------|-----------------------------------------------|
| 83.080.01 | Polimerni materiali na<br>splošno                            | Plastics in general                           |

oSIST prEN ISO 23977-1:2021

en,fr,de

oSIST prEN ISO 23977-1:2021

## iTeh STANDARD PREVIEW (standards.iteh.ai)

oSIST prEN ISO 23977-1:2021 https://standards.iteh.ai/catalog/standards/sist/c3368155-6cbe-480b-9a5aef2babb5f3ea/osist-pren-iso-23977-1-2021

## INTERNATIONAL STANDARD



First edition 2020-11

# Plastics — Determination of the aerobic biodegradation of plastic materials exposed to seawater —

Part 1:

Method by analysis of evolved carbon dioxide iTeh STANDARD PREVIEW

S Plastiques — Détermination de la biodégradation aérobie des matières plastiques exposées à l'eau de mer —

Partie 1: Méthode par analyse du dioxyde de carbone dégagé

https://standards.iteh.ai/catalog/standards/sist/c3368155-6cbe-480b-9a5aef2babb5f3ea/osist-pren-iso-23977-1-2021



Reference number ISO 23977-1:2020(E)

## iTeh STANDARD PREVIEW (standards.iteh.ai)

oSIST prEN ISO 23977-1:2021 https://standards.iteh.ai/catalog/standards/sist/c3368155-6cbe-480b-9a5aef2babb5f3ea/osist-pren-iso-23977-1-2021



#### **COPYRIGHT PROTECTED DOCUMENT**

© ISO 2020

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

#### ISO 23977-1:2020(E)

## Contents

| Foreword                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                               | iv                                             |
|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| Introduction.                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                               | V                                              |
| 1 Scope                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                              |
| 2 Norma                                                              | tive references                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                              |
| 3 Terms                                                              | and definitions                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                              |
| 4 Princip                                                            | ple                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                              |
| 5 Test en                                                            | lvironment                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3                                              |
| 6 Reager                                                             | 1ts                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                              |
| 7 Appara                                                             | atus                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                                              |
| 8.1<br>8.2<br>8.3<br>8.4<br>8.5<br>8.6<br>8.7<br>9<br>Calcula<br>9.1 | Imre   Test material   Reference materials   Test set up   Pre-conditioning phase   Start of the test   Carbon dioxide measurement   End of the test   ation and expression of results   Reference   9.1.1   Amount of CO2 produced   9.1.2   Percentage of biodegradation   Visual inspection   OSIST prEN ISO 23977-1:2021   Expression and interpretation of results   c3368155-6cbe-480b-9a5a-   ef2babb5f3ea/osist-pren-iso-23977-1-2021 | 5<br>5<br>6<br>6<br>7<br>7<br>8<br>8<br>8<br>8 |
| 10 Validit                                                           | ef2babb5f3ea/osist-pren-iso-23977-1-2021<br>y of results                                                                                                                                                                                                                                                                                                                                                                                      | 11                                             |
|                                                                      | port                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                |
| Annex A (informative) Example of a respirometric system              |                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13                                             |
| Bibliography                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15                                             |

#### ISO 23977-1:2020(E)

#### Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see <a href="https://www.iso.org/directives">www.iso.org/directives</a>).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see <a href="https://www.iso.org/patents">www.iso.org/patents</a>).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html. (standards.iteh.ai)

This document was prepared by Technical Committee ISO/TC 61, *Plastics*, Subcommittee SC 14, *Environmental aspects*.

A list of all parts in the ISO 23997 series can be found on the ISO website.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at <u>www.iso.org/members.html</u>.

### Introduction

According to the United Nations Environment Program (UNEP), one of the most notable properties of synthetic polymers and plastics is their durability which, combined with their accidental loss, deliberate release and poor waste management has resulted in the ubiquitous presence of plastic in oceans (UNEP, 2015<sup>[16]</sup>).

It is well known and documented that marine litter can pose risks and a negative impact on living marine organisms and on human beings. Degradability of plastic materials exposed to the marine environment is one of the factors affecting impact and strength of effects. The uncontrolled dispersion of biodegradables plastics in natural environments is not desirable. The biodegradability of products cannot be considered as an excuse to spread wastes that should be recovered and recycled. However, test methods to measure rate and level of biodegradation in natural environments are of interest in order to better characterize the behaviour of plastics in these very particular environments. Thus, the degree and rate of biodegradation is of major interest in order to obtain an indication of the potential biodegradability of plastic materials when exposed to different marine habitats.

ISO/TC 61/SC 14 has established several test methods for biodegradation testing of plastic materials under laboratory conditions covering different environmental compartments and test conditions, as shown in <u>Table 1</u>.

| Cond<br>Environmental compartment                                                                           | tions<br>Presence/absence of oxygen                                                               | W Test methods           |  |  |
|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------|--|--|
| Controlled composting conditions                                                                            | tandards itch ai)                                                                                 | ISO 14855-1              |  |  |
| controlled compositing conditions                                                                           |                                                                                                   | ISO 14855-2              |  |  |
| High-solids anaerobic-digestion<br>conditi <b>ons</b> s://standards.itel                                    | oSIST prEN ISO 23977-1:2021<br>Anaerobic conditions<br>ai/catalog/standards/sist/c3368155-6cbe-48 | ISO 15985<br>00-9a5a-    |  |  |
| Controlled anaerobic slurry system                                                                          | bb5f3ea/Asiaerobicconditions <sup>021</sup>                                                       | ISO 13975                |  |  |
| Soil                                                                                                        | Aerobic conditions                                                                                | ISO 17556                |  |  |
|                                                                                                             | Aerobic conditions                                                                                | ISO 14851                |  |  |
| Aqueous medium                                                                                              |                                                                                                   | ISO 14852                |  |  |
|                                                                                                             | Anaerobic conditions                                                                              | ISO 14853                |  |  |
|                                                                                                             | Aerobic conditions                                                                                | ISO 18830 <sup>a</sup>   |  |  |
| Seawater/sandy sediment interface                                                                           |                                                                                                   | ISO 19679 <sup>a</sup>   |  |  |
| Marine sediment                                                                                             | Aerobic conditions                                                                                | ISO 22404 <sup>a</sup>   |  |  |
| Convetor                                                                                                    | Aerobic conditions                                                                                | ISO 23977-1 <sup>a</sup> |  |  |
| Seawater                                                                                                    |                                                                                                   | ISO 23977-2 <sup>a</sup> |  |  |
| <sup>a</sup> Test method for measuring biodegradation of plastic materials when exposed to marine microbes. |                                                                                                   |                          |  |  |

#### Table 1 — Test methods for biodegradation testing of plastics

All marine biodegradation test methods are based on exposure of plastic materials to marine samples (seawater and/or sediment) taken from shoreline areas. By a quantitative viewpoint, these methods are not equivalent, because, for example, the microbial density in seawater is generally lower compared to the density determined in sediment. In addition, the microbial composition and diversity can be different. Moreover, as a rule, the nutrient concentration found in sediment is normally higher compared to the concentration in seawater.

This document provides a test method for determining the biodegradation level of plastic materials exposed to the microbial population present in seawater from a pelagic zone under laboratory conditions. The biodegradation is followed by measuring the evolved  $CO_2$ .

The test is performed with either seawater only ("pelagic seawater test") or with seawater to which little sediment was added ("suspended sediment seawater test").

The pelagic seawater test simulates the conditions found in offshore areas with low water currents and low tidal movements, whereas the suspended sediment seawater test simulates conditions which might be found in coastal areas with stronger water currents and tidal movements.

## iTeh STANDARD PREVIEW (standards.iteh.ai)

oSIST prEN ISO 23977-1:2021 https://standards.iteh.ai/catalog/standards/sist/c3368155-6cbe-480b-9a5aef2babb5f3ea/osist-pren-iso-23977-1-2021

## Plastics — Determination of the aerobic biodegradation of plastic materials exposed to seawater —

## Part 1: Method by analysis of evolved carbon dioxide

#### 1 Scope

This document specifies a laboratory test method for determining the degree and rate of the aerobic biodegradation level of plastic materials. Biodegradation is determined by measuring the  $CO_2$  evolved from plastic materials when exposed to seawater sampled from coastal areas under laboratory conditions.

The conditions described in this document might not always correspond to the optimum conditions for the maximum degree of biodegradation, however this test method is designed to give an indication of the potential biodegradability of plastic materials.

NOTE This document addresses plastic materials but can also be used for other materials.

## iTeh STANDARD PREVIEW

## 2 Normative references (standards.iteh.ai)

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 5667-3, Water quality — Sampling — Part 3: Preservation and handling of water samples

ISO 8245, Water quality — Guidelines for the determination of total organic carbon (TOC) and dissolved organic carbon (DOC)

ISO 10210, Plastics — Methods for the preparation of samples for biodegradation testing of plastic materials

ISO 10523, Water quality — Determination of pH

ISO 11261, Soil quality — Determination of total nitrogen — Modified Kjeldahl method

#### 3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at <u>https://www.iso.org/obp</u>
- IEC Electropedia: available at <u>http://www.electropedia.org/</u>

#### 3.1

#### pelagic zone

water body above the seafloor

Note 1 to entry: It is also referred to as the open water or the water column.

#### ISO 23977-1:2020(E)

Note 2 to entry: The surface of the pelagic zone is moved by wind-driven waves, is in contact with the atmosphere and exposed to sunlight. With increasing depth pressure increases, temperature decreases, and light and surface wave energy are attenuated.

[SOURCE: ISO 22766:2020, 3.4]

#### 3.2 dissolved inorganic carbon DIC

part of the inorganic carbon in water which cannot be removed by specified phase separation

Note 1 to entry: Phase separation can be achieved for example by centrifugation at 40 000 m  $\cdot$  s<sup>-2</sup> for 15 min or by membrane filtration using membranes with pores of 0,2  $\mu$ m to 0,45  $\mu$ m diameter.

[SOURCE: ISO 14852:-, 3.4]

#### 3.3

#### theoretical amount of evolved carbon dioxide

#### ThCO<sub>2</sub>

maximum theoretical amount of carbon dioxide evolved after completely oxidizing a chemical compound, calculated from the molecular formula

Note 1 to entry: It is expressed as milligrams of carbon dioxide evolved per milligram or gram of test compound.

iTeh STANDARD PREVIEW

[SOURCE: ISO 14852:-, 3.5]

### 3.4

#### total organic carbon

amount of carbon bound in an organic compound

Note 1 to entry: It is expressed as milligrams of carbon per 100 mg of the compound.

https://standards.iteh.ai/catalog/standards/sist/c3368155-6cbe-480b-9a5a-[SOURCE: ISO 17556:2019, 3.14] ef2babb5f3ea/osist-pren-iso-23977-1-2021

### 3.5

#### dissolved organic carbon DOC

part of the organic carbon in water which cannot be removed by specified phase separation

Note 1 to entry: Phase separation can be achieved for example by centrifugation at 40 000 m·s<sup>-2</sup> for 15 min or by membrane filtration using membranes with pores of 0,2  $\mu$ m to 0,45  $\mu$ m diameter.

[SOURCE: ISO 14852:-, 3.7]

#### 3.6

#### lag phase

time from the start of a test until adaptation and/or selection of the degrading microorganisms is achieved and the degree of biodegradation of a chemical compound or organic matter has increased to about 10 % of the maximum level of biodegradation (3.8)

Note 1 to entry: It is measured in days.

[SOURCE: ISO 14852:-, 3.8]

#### 3.7

#### biodegradation phase

time from the end of the lag phase (3.6) of a test until the plateau phase has been reached

Note 1 to entry: It is measured in days.

[SOURCE: ISO 14852:-, 3.10]

#### 3.8

#### maximum level of biodegradation

degree of biodegradation of a chemical compound or organic matter in a test, above which no further biodegradation takes place during the test

Note 1 to entry: It is measured in per cent.

[SOURCE: ISO 14852:-, 3.9]

**3.9 plateau phase** time from the end of the *biodegradation phase* (<u>3.7</u>) until the end of a test

Note 1 to entry: It is measured in days.

[SOURCE: ISO 14852:-, 3.11]

#### 3.10

#### pre-conditioning

pre-incubation of an inoculum under the conditions of the subsequent test in the absence of the chemical compound or organic matter under test, with the aim of improving the test by acclimatization of the microorganisms to the test conditions

[SOURCE: ISO 14852:-, 3.13]

## 4 Principle iTeh STANDARD PREVIEW

This document describes two variations of a test method for determining the biodegradability of plastic materials by the indigenous population of microorganisms in natural seawater using a static aqueous test system. The test is performed under mesophilic test conditions for up to two years by incubating plastic materials with either seawater only ("pelagic seawater test"), or with seawater to which low amount of sediment has been added ("suspended sediment seawater test"), coming from the same site as that from which the seawater was taken.

Biodegradation is followed by measuring the evolution of carbon dioxide using a suitable, analytical method. The level of biodegradation is determined by comparing the amount of carbon dioxide evolved with the theoretical amount [theoretical amount of evolved carbon dioxide ( $ThCO_2$ )] and expressed in percentage. The test result is the maximum level of biodegradation, determined from the plateau phase of the biodegradation curve. The principle of a system for measuring evolved carbon dioxide is given in ISO 14852:—, Annex A.

#### 5 Test environment

Incubation shall take place in the dark or in diffused light, in an enclosure which is free from vapours inhibitory to marine microorganisms and which is maintained at a constant mesophilic temperature. It should preferably be between 15 °C to 25 °C, but not exceeding 28 °C, to an accuracy of  $\pm 1$  °C. Any change in temperature shall be justified and clearly indicated in the test report.

NOTE Test results are obtained for temperatures that can be different from real conditions in marine environment.

#### **6** Reagents

Use only reagents of recognized analytical grade.

#### 6.1 Water

Distilled or deionized water, free of toxic substances (copper in particular) and containing less than 2 mg/l of TOC.