

SLOVENSKI STANDARD oSIST prEN IEC 63300:2022

01-marec-2022

Preskusne metode za električne in magnetne lastnosti jeder iz magnetnega prahu

Test methods for electrical and magnetic properties of magnetic powder cores

iTeh STANDARD

Méthodes d'essai des propriétés électriques et magnétiques des noyaux en poudre magnétique

(standards.iteh.ai) istoveten z: prEN IEC 63300:2022

Ta slovenski standard je istoveten z:

oSIST prEN_IEC_63300:2022

	https://standards.iteh.a	i/catalog/standards/sist/cfdbdb8b-	
<u>ICS:</u>	3f99-45aa-a8cc-65667751e8a0/osist-pren-iec-63300-		
29.030	Magnetni materiali	²⁰ Magnetic materials	
29.100.10	Magnetne komponente	Magnetic components	

oSIST prEN IEC 63300:2022

en

iTeh STANDARD PREVIEW (standards.iteh.ai)

oSIST prEN IEC 63300:2022 https://standards.iteh.ai/catalog/standards/sist/cfdbdb8b-3f99-45aa-a8cc-65667751e8a0/osist-pren-iec-63300-

2022

51/1401/CDV

VOTING:

COMMITTEE DRAFT FOR VOTE (CDV)

PROJECT NUMBER:	
IEC 63300 ED1	
DATE OF CIRCULATION: 2022-01-14	CLOSING DATE FOR 2022-04-08
SUPERSEDES DOCUMENTS:	

51/1368/CD, 51/1379/CC

IEC TC 51 : MAGNETIC COMPONENTS, FERRITE AND MAGNETIC POWDER MATERIALS					
SECRETARIAT:	Secretary:				
Japan	Mr Takeshi Abe				
OF INTEREST TO THE FOLLOWING COMMITTEES:	PROPOSED HORIZONTAL STANDARD:				
TC 68					
iTeh STA	Other TC/SCs are requested to indicate their interest, if any, in this CDV to the secretary.				
FUNCTIONS CONCERNED:					
SUBMITTED FOR CENELEC PARALLEL VOTING					
Attention IEC-CENELEC parallel voting					
The attention of IEC National Committees. Internet of C 63300:2022 CENELEC, is drawn to the fact that this Committee Draft for Vote (CDV) is submitted for paraller voting leards. Ich.avcatalog/standards/sist/cfdbdb8b-					
3f99-45aa-a8cc-65667751 The CENELEC members are invited to vote through the CENELEC online voting system. 20	e8a0/osist-pren-iec-63300- 22				

This document is still under study and subject to change. It should not be used for reference purposes.

Recipients of this document are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.

TITLE:

Test methods for electrical and magnetic properties of magnetic powder cores

PROPOSED STABILITY DATE: 2028

NOTE FROM TC/SC OFFICERS:

Copyright © 2021 International Electrotechnical Commission, IEC. All rights reserved. It is permitted to download this electronic file, to make a copy and to print out the content for the sole purpose of preparing National Committee positions. You may not copy or "mirror" the file or printed version of the document, or any part of it, for any other purpose without permission in writing from IEC.

CONTENTS

1	FOREWORD					
2	INTRODUCTION					
3	1	Scop	e	9		
4	2	Norm	native references	9		
5	3	Term	s, definitions and symbols	.9		
6	4	Instru	iments and equipment	10		
7	•	1 1	General provision	10		
7 8		4.1	Excitation source	10		
9		421	General provision	10		
10		4.2.2	Sinusoidal wave excitation source	10		
11		4.2.3	Square wave excitation source	10		
12		4.2.4	Calculation of magnetic flux density	11		
13		4.3	Measuring equipment	11		
14		4.3.1	General provision	11		
15		4.3.2	Voltmeter	11		
16		4.3.3	Data acquisition unit	12		
17		4.4	Sensor	12		
18		4.4.1	Sampling resistor.	12		
19		4.4.2	Current transformer	12		
20		4.5	Other description (Standard US-rten-ar)	12		
21		4.5.1	Intermediate connector	12		
22	_	4.5.2	Thermostat <u>oSIST.prEN.IEC.63300:2022</u>	13		
23	5	Sam	plehttps://standards.iteh.ai/catalog/standards/sist/ctdbdb8b	13		
24		5.1	Magnetic core-45aa-a8cc-65667751e8a0/osist-pren-iec-63300-	13		
25		5.2	Winding	13		
26		5.2.1	Winding condition	13		
27		5.2.2	Dual winding	13		
28		5.2.3	Single winding	13		
29		5.3 5.4	Barameters of sample	14		
30	6	J.4 Meas		14		
20	0	6 1	Polation to practice	11		
32		6.2	Effective parameters	14		
34		0.2 6.3	Magnetic state of measurement	15		
35	7	Test	methods for the power loss	15		
36	•	7 1	Summary	15		
37		7.2	AC power method	16		
38		7.3	DC power method	16		
39		7.4	Calorimetric method	16		
40	8	Test	methods for effective permeability	16		
41		8.1	Summary	16		
42		8.2	Large signal AC method	17		
43		8.3	Impedance method	17		
44		8.4	Pulse method	17		

45	9	Test	method for effective complex permeability	17
46	10	Test	method for quality factor (Q)	17
47	11	Verifi	cation of measurement accuracy	17
48	Ann	ex A (informative) AC power method	18
49	А	1	Overview	18
50	A	2	Basic circuit diagram	18
51	A	3	Measuring device	18
52		A.3.1	High frequency excitation source	18
53		A.3.2	Exciting winding N_1 and voltage sensing winding N_2	18
54		A.3.3	Sampling resistor R	19
55		A.3.4	Data collector	19
56	A	4	Test steps	19
57	A	5	Measuring principle	19
58	A	6	Error Analysis	20
59	A	7	Matters needing attention	20
60		A.7.1	Measurement error	20
61		A.7.2	Deduction of the winding loss	20
62	A	8	Specific test methods	20
63		A.8.1	B-H analyzer methodS.I.A.N.DA.KD	20
64		A.8.2	Power analyzer method	20
65		A.8.3	Capacitive reactive compensation method	21
66	A	.9	Measurement for quality factor (Q)	22
67	Ann	ex B(informative) DC power method an us needed and an	23
68	В	.1	Overview	23
69	В	.2	Basic circuit diagram. <u>oSIST.prEN.IEC.63300:2022</u>	23
70	В	.3	Measuringhtevicetandards.iteh.ai/catalog/standards/sist/cfdbdb8b	23
71		B.3.1	DC voltage Sources up-65667751e8a0/osist-pren-iec-63300-	23
72		B.3.2	DC/AC Inverter	23
73		B.3.3	Exciting winding N ₁	23
74		B.3.4	DC ammeter and DC voltmeter for measuring the average value	23
75	В	.4	Test steps	23
76	В	.5	Measuring principle	24
77	В	.6	Matters needing attention	24
78		B.6.1	Inverter loss	24
79		B.6.2	Deduction of winding loss	24
80	Ann	ex C (informative) Calorimetric method	25
81	С	5.1	Overview	25
82	С	5.2	Basic circuit diagram	25
83	С	.3	Measuring device	25
84		C.3.1	Excitation source	25
85		C.3.2	Temperature sensor	25
86		C.3.3	Thermal insulated container	25
87		C.3.4	Thermal medium	25
88		C.3.5	Sample	26
89	C	.4	Test steps	26
90	C	5.5	Measuring principle	26
91	С	6.6	Matters needing attention	26
92	C	5.7	Specific test methods	27

oSIST prEN IEC 63300:2022

IEC CDV 63300 © IEC 2021 - 4 -

93	C.7.1	Calibration calorimetric method	27
94	C.7.2	Comparative calorimetric method	28
95	Annex D (i	informative) Large signal AC method	30
96	D.1	Overview	
97	D.2	Basic circuit diagram	
98	D.3	Measuring device	
99	D.3.1	High-frequency excitation source	
100	D.3.2	Exciting winding N $_{1}$ and voltage sensing winding N $_{2}$	31
101	D.3.3	Sampling resistor R	
102	D.3.4	Data collector	
103	D.4	Test steps	
104	D.5	Measuring principle	
105	D.6	Matters needing attention	31
106	Annex E (i	nformative) Impedance method	33
107	E.1	Overview	
108	E.2	Basic circuit diagram	
109	E.3	Measuring device	
110	E.3.1	Impedance analyzer or LCR meter	
111	E.3.2	Exciting winding R n. S. I.A.N.DARD	33
112	E.4	Test steps	
113	E.5	Measuring principle	
114	E.6	Matters needing attention	
115	Annex F (i	nformative) Pulse method	
116	F.1	Overview	
117	F.2	Basic circuit diagram. <u>oSIST prEN IEC 63300:2022</u>	
118	F.3	Measuringhtevicetandards.itch.ai/catalog/standards/sist/cfdbdb8b-	
119	F.3.1	Sampling ⁹ resistor Rc-65667751e8a0/osist-pren-iec-63300-	
120	F.3.2	Switch S	
121	F.3.3	Exciting winding N ₁	35
122	F.3.4	Capacitor C	
123	F.4	Test steps	
124	F.5	Measuring principle	
125	F.6	Matters needing attention	
126	Annex G (informative) The method of verification and the criteria for the judgment	
127	G.1	Overview	
128	Annex H (i	informative) Imposing of DC bias on the core	40
129	H.1	Overview	40
130	H.2	Matters needing attention	40
131	Annex I (ir	nformative) References	42
132	l.1	Overview	
133	1.2	The effect of rise time of square wave excitation on the core loss	
134	1.3	Phase error limit	
135	1.4	Derivation of formula (8)	
136	1.5	SRF consideration of the sample	44
137	Figure 1 –	Figure of square waveform	11
138	Figure A 1	– Diagram of AC power method	18
100	i iguio A.I		

139	Figure A.2 – Circuit diagram of reactive power compensation of capacitor	21
140	Figure A.3 – Phasor diagram of reactive power compensation of capacitor	22
141	Figure B.1 – Diagram of DC meter method	23
142	Figure C.1 – Diagram of the calorimetric method	25
143	Figure C.2 – Diagram of the calibration calorimetric method	27
144	Figure C.3 – Diagram of the comparative calorimetric method	28
145	Figure D.1 – Diagram of large signal AC method	30
146	Figure E.1 – Diagram of impedance method	33
147	Figure F.1 – Diagram of pulse method	35
148	Figure F.2 – Exciting voltage and current waveform on the exciting winding	36
149	Figure G.1 – Diagram of air-core inductor	38
150	Figure H.1 – Diagram of imposing of DC bias	40
151	Figure I.1 – Square wave excitation source	43
152	Figure I.2 - Diagram of the ratio error and phase error	43
153	Figure I.3 - Equivalent circuit model of sample	44
154	Table 1 – Comparisons of measuring method for power loss R	15
155	Table I.1 - Example k, α , β and other parameters.	42
156	Table I.2 - Example core losses error with different transmission	42
157	Table I.3 – Example: the core losses measuring error and ratio error for phase error	43
158	Table I.4 – Example: ΔL at different frequencies	45
	<u>oSIST prEN IEC 63300:2022</u>	

159

https://standards.iteh.ai/catalog/standards/sist/cfdbdb8b-

3f99-45aa-a8cc-65667751e8a0/osist-pren-iec-63300-

2022

160	INTERNATIONAL ELECTROTECHNICAL COMMISSION				
161					
162		TEST METHODS			PROPERTIES OF
163				WDER CORES	
164					
165			FORE	WORD	
166 167 168 169 170 171 172 173 174 175	1) The International E all national electr international co-op this end and in ac Technical Reports Publication(s)"). Th in the subject dea governmental orga with the Internatio agreement between		technical Commission (IEC) nical committees (IEC Nat n on all questions concerning to other activities, IEC put licly Available Specification eparation is entrusted to tech h may participate in this ons liaising with the IEC also rganization for Standardizati wo organizations.	is a worldwide organization fo ional Committees). The ob g standardization in the electu olishes International Standard ns (PAS) and Guides (her nnical committees; any IEC N preparatory work. Internation o participate in this preparati tion (ISO) in accordance wit	or standardization comprising ject of IEC is to promote rical and electronic fields. To ds, Technical Specifications, eafter referred to as "IEC ational Committee interested nal, governmental and non- on. IEC collaborates closely th conditions determined by
176 177 178	2)	The formal decisions or a consensus of opinion or interested IEC National C	greements of IEC on technic the relevant subjects sinc committees.	cal matters express, as nearly se each technical committee	as possible, an international has representation from all
179 180 181 182	3)	IEC Publications have the Committees in that sense Publications is accurate, misinterpretation by any e	e form of recommendations e. While all reasonable effo , IEC cannot be held resp end user.	for international use and an rts are made to ensure that onsible for the way in whic	re accepted by IEC National the technical content of IEC h they are used or for any
183 184 185 186	4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publicat transparently to the maximum extent possible in their national and regional publications. Any diverge between any IEC Publication and the corresponding national or regional publication shall be clearly indicate the latter.				e to apply IEC Publications ublications. Any divergence n shall be clearly indicated in
187 188 189	5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conform assessment services and, in some areas, access to EC marks of conformity. IEC is not responsible for a services carried out by independent certification bodies.				on bodies provide conformity C is not responsible for any
190	6)	All users should ensure the	hat they have the latest edition	on of this publication.	3 b-
191 192 193 194 195	7) No liability shall attach to IEC of its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage of other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.				
196 197	 Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication. 				
198 199	9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject or patent rights. IEC shall not be held responsible for identifying any or all such patent rights.				
200 201	IEC 63300 has been prepared by IEC technical committee 51: Magnetic components, ferrite and magnetic powder materials. It is an international standard.				
202	Th	ne text of this Internat	ional Standard is based	l on the following docum	ents:
			FDIS	Report on voting	

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

51/XX/RVD

The language used for the development of this International Standard is English.

51/XX/FDIS

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by
 IEC are described in greater detail at www.iec.ch/standardsdev/publications.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

iTeh STANDARD PREVIEW (standards.iteh.ai)

oSIST prEN IEC 63300:2022

https://standards.iteh.ai/catalog/standards/sist/cfdbdb8b-3f99-45aa-a8cc-65667751e8a0/osist-pren-iec-63300-2022 IEC CDV 63300 © IEC 2021

217

INTRODUCTION

Magnetic powder cores have the characteristics of low relative permeability, high saturated flux density and low loss. Therefore, compared with ungapped ferrite, the equivalent impedance of a sample of the magnetic powder core is much smaller, and the magnetizing current is very large, so the required excitation source needs both high frequency and highpower capacity, which is difficult to obtain in practice. Moreover, the impedance angle of a magnetic powder core under test is very close to 90°, and this results in great difficulties to obtain accurate measurements of power loss.

The IEC 62044 standard series provides measuring methods of magnetic properties at low and high excitation levels for magnetic cores made of magnetic oxides or metallic powders. However, the methods introduced in IEC 62044 cannot fully meet the measurement requirements for magnetic properties of magnetic powder cores. So, it is necessary to have a standard for suitable measuring methods for the magnetic properties of magnetic powder cores.

New test methods with pulse wave excitation and DC power method that account for the characteristics of magnetic power cores are introduced in this standard, in addition to some modifications for the traditional test methods. Also, ideally an air core inductor with single winding or dual windings is introduced in the standard to verify or calibrate the accuracy of test methods for magnetic properties of magnetic powder cores, because of the linear properties of an air core inductor.

iTeh STANDARD PREVIEW

(standards.iteh.ai)

oSIST prEN IEC 63300:2022

https://standards.iteh.ai/catalog/standards/sist/cfdbdb8b-3f99-45aa-a8cc-65667751e8a0/osist-pren-iec-63300-2022

TEST METHODS FOR ELECTRICAL AND MAGNETIC PROPERTIES OF 237 MAGNETIC POWDER CORES 238

1 Scope 239

This standard provides the test methods for the electrical and magnetic properties of magnetic 240 powder cores used for inductive components in electronics equipment, switch-mode power 241 supplies and power conversion equipment, and introduces measuring principles, scope of 242 application and matters needing attention for each method. 243

The parameters used to characterize the magnetic powder cores include: inductance factor, 244 effective permeability, complex relative permeability, temperature coefficient of permeability, 245 frequency coefficient of permeability, DC bias characteristic, power loss, and quality factor. 246 This standard is the basis for determining the characteristic parameters of magnetic powder 247 248 cores.

Normative references 249 2

- The following referenced documents are indispensable for the application of this document. 250 For dated references, only the edition cited is applicable to this document. For undated 251 references, the latest edition of the referenced document (including any amendments) to 252 applies. 253 I I EN SIA
- IEC 60050, International Electrotechnical Vocabulary (IEV)-Chapter 221: Magnetic materials 254 and components 255
- IEC 61007, Transformers and inductors for use in electronic and telecommunication 256 equipment - Measuring methods and test procedures [en.al] 257
- IEC 62044-1, Cores made of soft magnetic materials-Measuring methods Part 1: Generic 258 specification 259 SIST prEN IEC 63300.2022
- 260
- IEC 62044-2, Cores made of soft magnetic materials-Measuring methods Part 2: Magnetic properties at low excitation level 261
- IEC 62044-3, Cores made of soft magnetic materials-Measuring methods Part 3: Magnetic 262 263 properties at high excitation level
- IEC 63182-2, Magnetic powder cores Guidelines on dimensions and the limits of surface 264 irregularities – Part 2: Ring-cores 265

Terms, definitions and symbols 3 266

3.1 Terms and definitions 267

- 268 No terms and definitions are listed in this document.
- ISO and IEC maintain terminological databases for use in standardization at the following 269 addresses: 270
- IEC Electropedia: available at http://www.electropedia.org/ 271 •
- 272 ISO Online browsing platform: available at http://www.iso.org/obp •

Symbols 273 3.2

277

- All the formulas in this standard use basic SI units. When multiples or sub-multiples are used, 274 the appropriate power of 10 shall be introduced. 275
- 276 f the frequency, in Hertz (Hz);
- 278 T_{s} the cycle, in Second (s);
- $B_{\rm m}$ the peak value of effective magnetic flux density, in Tesla (T); 279
- $H_{\rm m}$ the peak value of effective magnetic field strength, in Ampere per meter (A/m); 280
- P_{c} the power loss absorbed by the core, in Watt (W); 281

- P_{W} the winding loss, in Watt (W);
- P_{cv} the power density absorbed by the core, in Watt per cubic meter (W/m³);
- 284 A_e the effective cross-sectional area of the core, in square meter (m²);
- $_{285}$ l_{e} the effective magnetic path length of the core, in meter (m);
- 286 V_e the effective volume of the core, in cubic meter (m³);
- 287 φ the phase, in Radian (rad);
- 288 $\Delta \varphi$ the phase shift absolute error, in Radian (rad);
- N_2 N₂ the number of turns of the voltage sensing winding;
- 290 ΔT the temperature rise, in degree Celsius (°C);
- N_1 the number of turns of the exciting winding;
- 292 μ_0 the magnetic constant (the permeability of vacuum), approximately 4 × π × 10⁻⁷ H/m;
- 293 μ_{ea} the effective amplitude permeability;
- 294 $\mu_{e\Delta}$ the effective incremental permeability.

295 4 Instruments and equipment

296 4.1 General provision

A suitable circuit (in annexes) and instruments shall be chosen for measuring.

298 4.2 Excitation source

299 4.2.1 General provision

The properties of magnetic powder cores provided by manufacturers are generally based on 300 sinusoidal wave excitation source, because that is the most repeatable and easily replicated 301 measurement. Applications include many diverse non-sinusoidal conditions, and therefore 302 methods for testing with other waveshapes are needed for specific cases. Sine wave basic 303 data is most useful as a common point of reference for characterizing materials, comparing 304 materials, correlating testing between labs, and setting clear specification limits. Excitation 305 sources in this standard include sinusoidal wave and square wave sources. Note that the 306 307 waveform of a voltage source (setting the magnetic flux density) does not necessarily match the waveform of the associated current (since the magnetic field strength follows according to 308 the inductive properties of the device under test.) Likewise, the waveform of a current source 309 (setting the magnetic field strength) does not necessarily match the waveform of the 310 associated voltage (from the induced flux density). The excitation source shall have low 311 internal impedance, with frequency and amplitude stable to within $\pm 0,1\%$ during measurement. 312

313 4.2.2 Sinusoidal wave excitation source

When sinusoidal wave excitation is specified, the total harmonic content of the excitation source shall be less than 1%. When the excitation voltage is sinusoidal, the magnetic flux density is calculated as in formula (1).

$$B_{\rm m} = \frac{\sqrt{2} \times U_{\rm ms}}{2 \times \pi \times f \times A_{\rm e} \times N_{\rm I}} \tag{1}$$

317

318 where :

319 *U*_{rms} is the RMS of excitation voltage, in Volt (V).

320 4.2.3 Square wave excitation source

When the square wave (the PWM waveform with 0,5 duty cycle) excitation is specified, as shown in Figure 1 (the negative half wave is the same as the positive half wave in shape), the overshoot U_0 shall be less than 5% of the peak pulse amplitude U_m , the droop U_D shall be less than 2% of the peak pulse amplitude U_m , the pulse rise time t_r and pulse fall time t_f shall be less than 1% of the cycle of the square wave. When the excitation voltage is square, the magnetic flux density is calculated as in formula (2). - 11 -

- -

51/1401/CDV

IEC CDV 63300 © IEC 2021

327

$$B_{\rm m} = \frac{U_{\rm m}}{4 \times f \times A_{\rm e} \times N_{\rm 1}} \tag{2}$$

STANDARI eh

oSIST prEN IEC 63300:2022

Key 329

328

337

Um peak pulse amplitude, the maximum value of an extrapolated smooth curve through the 330 top of the pulse, excluding any initial "spike" or "overshoot", the duration of which is less than 10 % of the pulse duration. in Volt (V). [Source: IEC61007-2020, 3.3] 331

- 332
- tr pulse rise time 333
- tf pulse fall time 334
- $U_{\mathsf{D}} \operatorname{droop}$ 335

https://standards.iteh.ai/catalog/standards/sist/cfdbdb8b-Uo overshoot 336

3f99-45aa-a8cc-65667751e8a0/osist-pren-iec-63300-Figure 1 – Figure of square waveform

4.2.4 Calculation of magnetic flux density 338

In general, the magnetic flux density with arbitrary AC waveform exciting voltage can be 339 calculated as in formula (3). 340

$$B_{\rm m} = \frac{U}{4 \times f \times A_{\rm e} \times N_{\rm 1}} \tag{3}$$

U is the average rectification value (ARV) of arbitrary AC waveform exciting voltage, in Volt 343 344 (V).

4.3 **Measuring equipment** 345

4.3.1 **General provision** 346

Voltage meter or voltage-measuring equipment shall be of high internal impedance. In order 347 to reduce measurement error, probes shall be of high input impedance. Additionally, the 348 bandwidth of voltage meter or voltage-measuring equipment shall cover the frequency of 349 harmonics whose amplitude is 1% of the amplitude of fundamental wave. 350

4.3.2 Voltmeter 351

In order to measure RMS, average value and peak value of the excitation voltage accurately, 352 a voltmeter with accuracy of 0.2 % is recommended. 353