

SLOVENSKI STANDARD SIST-TP CEN/TR 17602-60-02:2022

01-februar-2022

Zagotavljanje kakovosti proizvodov v vesoljski tehniki - Priročnik za tehnike blaženja učinkov sevanja na vezja ASIC in FPGA				
Space product FPGAs handb	t assurance - Techniques for ra ook	idiation effects mitigation in ASICs and		
Raumfahrtproo Strahlungseffe	Raumfahrtproduktsicherung Handbuch zu-Minderungsmethoden von Strahlungseffekten auf ASICs und FPGAs			
Ingénierie spa à-vis des effet	tiale - Guide sur les techniques s des radiations	de durcissement des ASICs et FPGAs vis-		
SIST-TP CEN/TR 17602-60-02:2022				
Ta slovenski standard je istove teli ($\Delta_{1.ai}/cat = E_1 v_{1.ai}/cat = E_2 v_{1.ai}/ca$				
	60-02	2-2022		
ICS:				
03.120.99	Drugi standardi v zvezi s kakovostjo	Other standards related to quality		
49.140	Vesoljski sistemi in operacije	Space systems and operations		

SIST-TP CEN/TR 17602-60-02:2022 en,fr,de

SIST-TP CEN/TR 17602-60-02:2022

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>SIST-TP CEN/TR 17602-60-02:2022</u> https://standards.iteh.ai/catalog/standards/sist/da72ff37-3c06-4266-a285-58a04dcd6573/sist-tp-cen-tr-17602-60-02-2022

SIST-TP CEN/TR 17602-60-02:2022

TECHNICAL REPORT RAPPORT TECHNIQUE

CEN/TR 17602-60-02

TECHNISCHER BERICHT

December 2021

ICS 49.140

English version

Space product assurance - Techniques for radiation effects mitigation in ASICs and FPGAs handbook

Ingénierie spatiale - Guide sur les techniques de durcissement des ASICs et FPGAs vis-à-vis des effets des radiations

Raumfahrtproduktsicherung - Handbuch zu Minderungsmethoden von Strahlungseffekten auf ASICs und FPGAs

This Technical Report was approved by CEN on 22 November 2021. It has been drawn up by the Technical Committee CEN/CLC/JTC 5.

CEN and CENELEC members are the national standards bodies and national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.

VIH)

(standards.iteh.ai)

Η,

SIST-TP CEN/TR 17602-60-02:2022 https://standards.iteh.ai/catalog/standards/sist/da72ff37-3c06-4266-a285-58a04dcd6573/sist-tp-cen-tr-17602-60-02-2022

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

© 2021 CEN/CENELEC All rights of exploitation in any form and by any means reserved worldwide for CEN national Members and for **CENELEC** Members.

Table of contents

Europe	ean For	eword	14
1 Scop	e		15
2 Refe	rences .		16
3 Term	s. defin	nitions and abbreviated terms	17
3.1	Terms f	from other documents	
3.2	Terms	specific to the present document	17
3.3	Abbrevi	ated terms	19
4 Radia	ation er	vironment and integrated circuits R.D.	25
4.1	Overvie		25
4.2	Radiatio	on environment in space	25
4.3	Radiatio	on Effects in (csandards.iteh.ai)	26
	4.3.1	Overview	26
	4.3.2	Cumulative effects. CEN/TR 17602-60-02:2022	26
	4.3.3	https://standards.iteh.ai/catalog/standards/sist/da72ff37- Single Event Effects (SEEs)	27
		4.35016-7067ia285-58a04dcd6573/sist-tp-cen-tr-17602-	
		4.3.3.3 Destructive SEE	
		4.3.3.4 Summary	30
5 Choo	osing a	device hardening strategy	31
5.1	The opt	timal strategy	31
5.2	How to	use this handbook	32
6 Tech	nology	selection and process level mitigation	35
6.1	Overvie		35
6.2	Mitigatio	on techniques	36
	6.2.1	Epitaxial layers	36
	6.2.2	Silicon On Insulator	37
	6.2.3	Triple wells	40
	6.2.4	Buried layers	42
	6.2.5	Dry thermal oxidation	43
	6.2.6	Implantation into oxides	45

6.3	Techno	logy scaling and radiation effects	46
7 Layo	ut		49
7.1	Overvie	w	49
7.2	Mitigatio	on techniques	50
	7.2.1	Ringed or Enclosed Layout Transistor	50
	7.2.2	Contacts and guard rings	52
	7.2.3	Dummy transistors	55
	7.2.4	Transistors Gate W/L ratio sizing	57
8 Anal	ogue ci	rcuits	58
8.1	Overvie	ew	58
8.2	Mitigatio	on techniques	59
	8.2.1	Node Separation and Inter-digitation	59
	8.2.2	Analogue redundancy (averaging)	63
	8.2.3	Resistive decoupling	64
	8.2.4	Filtering	67
	8.2.5	Modifications in bandwidth, gain, operating speed, and current drive	68
	8.2.6	Reduction of window of vulnerability	71
	8.2.7	Reduction of high impedance nodes	75
	8.2.8	Differential design	77
	8.2.9	Dual path hardeningen:ai/catalog/standards/sist/da72fl37	80
9 Emb	edded r	3c06-4266-a285-58a04dcd6573/sist-tp-cen-tr-17602- nemories	85
9.1	Overvie	60-02-2022 W	85
9.2	Mitigatio	on techniques	86
	9.2.1	Hardening of individual memory cells	86
		9.2.1.1 Overview 9.2.1.2 Resistive bardening	86
		9.2.1.3 Capacitive hardening	87
		9.2.1.4 IBM hardened memory cell	89 91
		9.2.1.6 DICE hardened memory cell	92
		9.2.1.7 NASA-Whitaker hardened memory cell 9.2.1.8 NASA-Liu hardened memory cell	94 95
	9.2.2	Bit-interleaving in memory arrays	97
	9.2.3	Data scrubbing	99
9.3	Compa	rison between hardened memory cells	100
10 Rad	liation-h	nardened ASIC libraries	. 101
10.1	Introduo	ction	101
10.2	IMEC D	Design Against Radiation Effects (DARE) library	102

10.3	CERN	0,25 μm radiation hardened library	103
10.4	BAE 0, ²	15 μm radiation hardened library	103
10.5	Ramon	Chips 0,18 µm and 0,13 µm radiation hardened libraries	103
10.6	Cobhar libraries	n (former Aeroflex) 600, 250, 130 and 90 nm radiation hardened	104
10.7	Microch ATMX1	hip Atmel MH1RT 0,35 μm and ATC18RHA 0,18 μm CMOS and 50RHA 0,15 μm SOI CMOS radiation hardened libraries	104
10.8	ATK 0,3	35 µm radiation hardened cell library	105
10.9	ST Micr	oelectronics C65SPACE 65 nm radiation hardened library	105
10.1	0RedCat	Devices radiation hardened libraries	105
11 Dig	ital circ	uits	106
11.1	Overvie	W	106
11.2	Mitigatio	on techniques	107
	11.2.1	Spatial redundancy 11.2.1.1 Description of the concept 11.2.1.2 Duplex architectures 11.2.1.3 Triple Modular Redundancy architectures 11.2.1.3.1 General 11.2.1.3.2 Basic TMR 11.2.1.3.3 Full FMR	107 107 108 109 109 109 110
	11.2.2	Temporal redundancy 11.2.2.1 Description of the concept. 11.2.1.1 11.2.2.1.1 Overview. 11.2.2.1.2 Triple Temporal Redundancy combined with spatial redunda 11.2.2.1.3 Is Minimal level sensitive latch 0-02.2022	113 113 113 ncy114 115
	11.2.3	Fail-safe/deadlock-free finite state machines/da72fB7	117
40.0	11.2.4	Selective use of logic cells, clock and reset lines hardening	121
12 Sys	tem on	a chip	123
12.1	Overvie	W	123
12.2	Mitigatio	on techniques	124
	12.2.1	Error Correcting Codes12.2.1.1 Introduction to multiple options12.2.1.1.1 General12.2.1.1.3 Cyclic Redundancy Check12.2.1.1.4 BCH codes12.2.1.1.5 Hamming codes12.2.1.1.6 SEC-DED codes12.2.1.1.7 Reed-Solomon codes12.2.1.1.8 Arithmetic codes12.2.1.1.9 Low Density Parity Codes	124 124 124 126 127 127 128 128 128 128 128 129
	12.2.2	Mitigation for Memory Blocks	130
	12.2.3	Filtering SET pulses in data paths	131
	12.2.4	Watchdog timers	133
	12.2.5	TMR in mixed-signal circuits	135
13 Fiel	d progr	ammable gate arrays	138

13.1	Overvie	w	138
13.2	Mitigatio	on techniques	140
	13.2.1	Local Triple Modular Redundancy	140
	13.2.2	Global Triple Modular Redundancy	142
	13.2.3	Large grain Triple Modular Redundancy	144
	13.2.4	Embedded user memory Triple Modular Redundancy	146
	13.2.5	Additional voters in TMR data-paths to minimise DCE	148
	13.2.6	Reliability-oriented place and Route Algorithm (RoRA)	151
	13.2.7	Embedded processor protection	153
	13.2.8	Partial reconfiguration or Scrubbing of configuration memory 13.2.8.1 Description of the concept	155 155 155 156 156 157
14 Soft	ware-in	nplemented hardware fault tolerance	160
14.1	Overvie		160
14.2	Mitigatio	on techniques IEN SIANDARD	161
	14.2.1	Redundancy at instruction level	161
	14.2.2	Redundancy at task level	167
	14.2.3	Redundancy at application level: using a hypervisor	171
15 Sys	tem arc	hitecture	174
15.1	Overvie	whttps://standards.iteh.ai/catalog/standards/sist/da72ff37	174
15.2	Mitigatio	on techniques6-a285-58a04dcd6573/sist-tp-cen-tr-17602-	175
	15.2.1	60-02-2022	175
	15.2.2	Watchdog timers	179
	15.2.3	Power cycling and reset	180
	15.2.4	Latching current limiters	180
	15.2.5	Spatial Redundancy 15.2.5.1 Overview 15.2.5.2 Duplex architectures 15.2.5.2.1 Description of the concept 15.2.5.2.2 Lockstep 15.2.5.2.3 Double duplex 15.2.5.2.4 Double Duplex Tolerant to Transients 15.2.5.3 Triple Modular Redundant system	181 181 181 181 182 183 183 185
	15.2.6	Error Correcting Codes	187
	15.2.7	Off-chip SET filters	187
16 Vali	dation r	nethods	188
16.1	Introduc	tion	188
16.2	Fault inj	ection	188

	16.2.1	Fault injection at transistor level 16.2.1.1 Overview 16.2.1.2 Physical level 2D/3D device simulation 16.2.1.3 Transient fault injection simulations at electrical level	188 188 189 190
	16.2.2	Fault injection at gate level	190
	16.2.3	 Fault injection at device level	191 191 191 193 M- 195
	16.2.4	Fault injection at system level	195
16.3	Real-life	e radiation tests	196
	16.3.1	Overview	196
	16.3.2	Tests on-board scientific satellites	196
	16.3.3	On-board stratospheric balloons	196
	16.3.4	Ground level tests	196
16.4	Ground	accelerated radiation tests	197
	16.4.1	Overview iTeh STANDARD	197
	16.4.2	Standards and specifications	197
	16.4.3	SEE test methodology.	198
	16.4.4	TID test methodology ards.iteh.ai)	200
	16.4.5	TID and SEE test facilities	202
		16.4.5.1 Overview CEN/TR 17602-60-02:2022	202
		16.41513 Single event effects atalog/standards/sist/da72ff37-	203
	16.4.6	Complementary SEE test strategies	207
		16.4.6.2 Laser beams SEE tests	207
		16.4.6.3 Ion-Microbeam SEE tests	209
		16.4.6.4 Californium-252 and Americium-241 SEE tests	210
Annex	A (infor	mative) Vendor/institute-ready solutions that include	
mitig	gation o	r help to mitigate	. 211
Bibliog	raphy		. 212

Figures

Figure 4-1:	Schematic showing how galactic cosmic rays deposit energy in an electronic device, after Lauriente and Vampola [321]	27
Figure 4-2:	Two upsets in the same word induced by a single particle (MBU)	29
Figure 4-3:	Two upsets in the different words induced by a single particle (MCU)2	29
Figure 5-1:	Different abstraction levels where mitigation techniques can be applied an naming convention for this Handbook.	d 33
Figure 6-1:	Example of epitaxial layer in CMOS technology	36

Figure 6-2:	a) Conventional bulk NMOS transistor, b) Partially depleted SOI, c) Fully depleted SOI
Figure 6-3:	a) single-well technology, b) twin-well technology, c) triple-well technology implementing a deep n-well to isolate the p-well forming the NMOS from the substrate
Figure 6-4:	Schematic view of a P-type buried layer in a P-well42
Figure 6-5:	Radiation-induced back channel threshold voltage shifts for different SOI substrates types, SOI layer thickness and hardening process conditions [1]
Figure 7-1:	Gate oxide and STI oxide in CMOS technology
Figure 7-2:	a) Conventional two edge NMOS, b) Enclosed Layout Transistor NMOS50
Figure 7-3:	Two examples of NMOS transistor layout eliminating radiation-induced leakage current between source and drain
Figure 7-4:	Parasitic thyristor responsible for SEL (top), introduction of P+ guard ring around NMOS transistor (bottom)
Figure 7-5:	CMOS transistors with guard rings
Figure 7-6:	RHBD technique using dummy transistors. (a) The circuits, (b) the layouts (layout1 on the left, layout2 on the right), after J. Chen [286]56
Figure 8-1:	Cross-section of two adjacent NMOS devices in a bulk CMOS technology (From [109])
Figure 8-2:	(a) Upset sensitivity data for basic DICE topology implemented in 90 nm CMOS at three angles of incidence [114] and (b) measured upset cross-sections as a function of azimuth angle for the Kr ion (LET of approximately 30 MeV*cm ² /mg) in improved DICE implementing nodal spacing [114]60
Figure 8-3:	Charge collected on an adjacent transistor for a) PMOS and, b) transistors as a function of the distance separating them ([112]) a72137
Figure 8-4:	(a) Comparison of collected charge for the active and passive NMOS devices following laser-induced charge deposition at the active device. (b) Collected charge for passive NMOS devices verifies the charge sharing effect and shows a nodal spacing dependence for the passive device charge collection ([95])
Figure 8-5:	Analogue averaging through the use of <i>N</i> identical resistors. A perturbation (ΔV) due to a particle strike on any one copy of the circuit is reduced to $\Delta V/N$
Figure 8-6:	(a) A standard current-based charge pump configuration for phase-locked loop circuits. (b) Single-event hardened voltage-based charge pump configuration
Figure 8-7:	(a) A standard LC Tank Voltage-Controlled Oscillator (VCO) and (b) Single- event hardened configuration utilizing decoupling resistor R_3 (From [118])
Figure 8-8:	Brokaw bandgap reference circuit with an output low-pass filter for improved noise, isolation, and transient suppression (From[128])67
Figure 8-9:	Transient PLL error response as a function of PLL bandwidth70
Figure 8-10): Simulated windows of vulnerability over one data conversion cycle in a 2- bit flash ADC (From [130])72

Figure 8-17	1: The number of errors with respect to cycle time following laser-induced charge deposition in a phase-locked loop (From [131]).	72
Figure 8-12	2: Simulated windows of vulnerability over one data conversion cycle for ur hardened and hardened 2-bit flash ADCs (From [132])	1- 73
Figure 8-13	3: Simplified view of the auto-zeroed comparator (From [134])	73
Figure 8-14	4: (a) Simplified schematic of a typical LC Tank VCO and (b) an experimentally observed transient resulting from laser-induced charge injection on transistor M1 (From [135])	75
Figure 8-15	5: Schematic of RHBD CMOS LC Tank VCO (From [134])	76
Figure 8-16	6: Two-dimensional slice of three PMOS transistors depicting the electrical signal and the charge-sharing signal caused by an ion strike, i.e. pulse quenching (From [142]).	78
Figure 8-17	7: Basic differential pair	78
Figure 8-18	8: Differential pair including devices A and B before and after DCC layout for maximizing charge sharing (From [143])	or 79
Figure 8-19	9: Charge collected by a single transistor for single (left) and parallel (right) transistor configuration, is shown in the top row. Differential charge is shown in the bottom row for single (left) and parallel (right) transistor configuration (From [143]).	79
Figure 8-20	0: (a) The switched-capacitor comparator operates in two phases: (b) reset phase and (c) evaluation phase (From [142])	81
Figure 8-2	1: Simplified circuit schematic of the differential amplifier showing the split input paths (From [142])	81
Figure 8-22	2: The switched-capacitor comparator with split differential amplifier input paths to harden the floating nodes against single-event upsets (From [142])https://standards.itch.ai/catalog/standards/sist/da72fl37	82
Figure 8-23	3: Simulated output error voltage versus deposited charge of a sample and hold amplifier with and without (dual path hardening (From [141])	82
Figure 8-24	4: Simulated deposited charge required to generate a SEU at the output of the comparator for various differential input voltages for the (a) unhardene design, (b) the design with increased capacitors (2x), and (c) the design implementing dual path hardening (From [142])	ed 83
Figure 9-1:	Resistor memory cell	86
Figure 9-2:	Hardened SRAM cell using a capacitor (SRAM-C cell)	88
Figure 9-3:	The SRAM-tct cell	88
Figure 9-4:	IBM hardened memory cell (after original picture in [177])	90
Figure 9-5:	HIT memory cell	91
Figure 9-6:	DICE hardened cell structure	93
Figure 9-7:	NASA-Whitaker hardened memory cell	94
Figure 9-8:	NASA-Liu hardened memory cell (after original picture in [186]	96
Figure 9-9:	Standard memory topology	98
Figure 9-10	0: Example of memory topology with scrambling	98
Figure 10- ²	1: Hardened 2 input NOR gate1	02

Figure 11-1: Block diagram of the spatial redundancy architecture108
Figure 11-2: (a) SET and (b) SEU detection with a duplex architecture108
Figure 11-3: Fault detection by a duplex architecture109
Figure 11-4: Hot backup (a) and duplication with backup (b) approaches109
Figure 11-5: SET (a) and SEU (b) detection with a TMR architecture110
Figure 11-6: Fault detection and correction in the full TMR architecture111
Figure 11-7: SEU-tolerant latch based on DMR (CE1 and CE2) and a Muller-C element (CE3)
Figure 11-8: Typical topology for a sequential circuit114
Figure 11-9: Temporal sampling using delays on clocks and TMR114
Figure 11-10: Temporal sampling using delays on data115
Figure 11-11: Minimal temporal sampling latch replicating itself in time115
Figure 11-12: 4 states FSM bubble-diagram showing legal and illegal states, and states transitions
Figure 12-1: Example of a CRC computation on a binary message "1101011011"127
Figure 12-2: An arithmetic function using an arithmetic code as error detection mechanism
Figure 12-3: Logical masking of a transient in two logical gates
Figure 12-4: Electrical masking along a path in combinatorial logic
Figure 12-5: Temporal masking tandards.iteh.ai)
Figure 12-6: SET Filter proposed by Actel Corporation for their Flash-based FPGAs, as per S. Rezgui et <u>alsin [329] EN/TR-17602-60-02:2022</u>
Figure 12-7: Watchdog Timerndards.iteh.ai/catalog/standards/sist/da72ff37
Figure 12-8: Functional block diagram of the IS139ASRH SEE-hardened voltage comparator
Figure 12-9: Signal-to-noise (SNR) ratio improvement when increasing use of Comparator TMR in a 10-bit pipelined ADC
Figure 13-1: High-level description of an FPGA structure
Figure 13-2: Schematic representation of the two layers composing an FPGA139
Figure 13-3: Local TMR – single combinatorial logic but triplicated registers140
Figure 13-4: RTAX-S/SL/DSP R-cell Implementation of D Flip-Flop Using Voter Gate Logic
Figure 13-5: Global TMR implemented in an FPGA143
Figure 13-6: Physical implementation of global TMR inside an FPGA143
Figure 13-7: Large grain TMR145
Figure 13-8: Physical implementation of a large grain TMR inside an FPGA145
Figure 13-9: BRAM TMR147
Figure 13-10: Routing defect within the same module149
Figure 13-11: Domain Crossing Event as a consequence of routing defect affecting two different modules

Figure	13-12: Inserting voters reduces the risk of domain crossing events	.150
Figure	13-13: RoRA's design flow	.152
Figure	13-14: Hybrid architecture using a fault detection-oriented I-IP	.154
Figure	13-15: Organization of the configuration memory for the Xilinx Virtex family	.156
Figure	13-16: Simple configuration and SEU correction design	.156
Figure	14-1: Temporal redundancy at instruction level	.162
Figure	14-2: Optimized architecture for temporal redundancy applied at instruction level	.164
Figure	14-3: Example of code	.164
Figure	14-4: Example of code with instruction level redundancy	.165
Figure	14-5: Task-level redundancy	.168
Figure	14-6: Architecture for temporal redundancy applied at task level	.168
Figure	14-7: DMT architecture	.169
Figure	14-8: Scheduling and fault detection in DMT architecture	.170
Figure	14-9: Time redundancy at application level	.172
Figure	15-1: TID for the L1 orbit with indication of the typical shielding range and the failure regions of commercial and semi-hard components (after [315])	e .176
Figure	15-2: Typical annual mission doses (spherical Al shield) for various orbits, fro ECSS-E-10-04A	om .176
Figure	15-3: Example of a dose depth curve (C. Poivey, NSREC 2002 short course)	.177
Figure	15-4: Figure Contributions of protons, electrons, and bremsstrahlung to total dose as a function of aluminum shielding. The data were taken after a 1 day exposure during the Explorer 55 space mission. (After [313])	39- .178
Figure	15-5: Block diagram of a LCL60-02-2022	.180
Figure	15-6: Block diagram of a duplex architecture	.182
Figure	15-7: Lockstep architecture	.182
Figure	15-8: UCTM-C/D architecture	.183
Figure	15-9: DT2 hardware architecture	.184
Figure	15-10: Triple Modular Redundancy	.185
Figure	15-11: Full Triple Modular Redundancy	.186
Figure	16-1: Flow chart for fault injections in FPGAs	.194
Figure	16-2: Flow chart of a typical static test	.199
Figure	16-3: Flow chart for a typical dynamic test	.200
Figure	16-4: Example of TID proposed test flow of test vehicle	.202
Figure	16-5: Neutron fluxes in NY City and at LANL	.205
Figure	16-6: Californium-252 fragments energy spectrum (left) and LET spectrum (right)	.210

Tables

Table 4-1: Summary of single event effects (SEE) as a function of component technology and family	30
Table 6-1: Summary of mitigation techniques at manufacturing process level and the radiation effects they address	35
Table 6-2: Summary of key characteristics for epitaxial layers	37
Table 6-3: Summary of key characteristics for silicon on insulator	40
Table 6-4: Summary of key characteristics for triple wells	42
Table 6-5: Summary of key characteristics for buried layers	43
Table 6-6: Impact of thermal oxidation process parameters on TID hardness	44
Table 6-7: Summary of key characteristics for dry thermal oxidation	45
Table 6-8: Summary of key characteristics for implantation into oxides	46
Table 7-1: Summary of mitigation techniques at physical layout level and the radiation effects they address	า 50
Table 7-2: Summary of key characteristics for enclosed layout transistor	52
Table 7-3: Summary of key characteristics for contacts and guard rings	55
Table 7-4: Summary of key characteristics for dummy transistors	57
Table 7-5: Summary of key characteristics for large W/L ration transistors	57
Table 8-1: Summary of mitigation techniques at analogue design circuit architecture level and the radiation effects they address	59
Table 8-2: Summary of key characteristics for node separation and inter-digitation	62
Table 8-3: Summary of key characteristics for analogue redundancy	64
Table 8-4:Summary of key characteristics for resistive decoupling	66
Table 8-5: Summary of keyschalacteristics for filtering dards/sist/da72ff37-	68
Table 8-6: Summary of key characteristics for modifications in blandwidth, gain, operating speed and current drive2-2022	71
Table 8-7: Summary of key characteristics for reduction of window of vulnerability	75
Table 8-8: Summary of known issue for reduction of high impedance nodes	77
Table 8-9: Summary of key characteristics for differential design	80
Table 8-10: Summary of key characteristics for dual path hardening	84
Table 9-1: Summary of mitigation techniques for embedded memories and the radiation effects they address	85
Table 9-2: Summary of key characteristics for resistive hardening	87
Table 9-3: Summary of key characteristics for capacitive hardening	89
Table 9-4: Summary of key characteristics for IBM hardened memory cell	91
Table 9-5: Summary of key characteristics for HIT hardened memory cell	92
Table 9-6: Summary of key characteristics for DICE hardened memory cell	94
Table 9-7: Summary of key characteristics for NASA-Whitaker hardened memory cell	95
Table 9-8: Summary of key characteristics for NASA-Liu hardened memory cell	97
Table 9-9:Summary of key characteristics for bit-interleaving in memory arrays	99

Table 9-10: Comparison between state-of-the-art SEU hardened memory cells100
Table 11-1: Summary of mitigation techniques at digital design circuit architecture level and the radiation effects they address 107
Table 11-2: Summary of key characteristics for spatial redundancy 113
Table 11-3: Summary of key characteristics for temporal redundancy116
Table 11-4: Summary of key characteristics for fail-safe, deadlock-free finite state machines
Table 11-5: Summary of key characteristics for selective use of logic cells121
Table 12-1: Summary of mitigation techniques at System-on-Chip level and the radiation effects they address
Table 12-2: Error detection and correction capability for some ECC
Table 12-3: Examples of parity check applied to a 7-bit word
Table 12-4: Example of commonly used CRCs 126
Table 12-5: Summary of key characteristics for error correcting codes
Table 12-6: Summary of key characteristics for filtering SET pulses in data paths133
Table 12-7: Summary of key characteristics for watchdog timers 135
Table 12-8: Summary of key characteristics for TMR in mixed-signal circuits
Table 13-1: FPGAs characteristics and representative manufacturers
Table 13-2: Summary of mitigation techniques for FPGAs and the radiation effects they address
Table 13-3: Summary of key characteristics for local Triple Modular Redundancy142
Table 13-4: Summary of key characteristics for global Triple Modular Redundancy 144
Table 13-5: Summary of Key characteristics for large grains Triple Modular Redundancy6+4266+a285+58a04dcd6573/sist-tp+cen-tr+17602+
Table 13-6: Summary of key characteristics for embedded user memory Triple Modular Redundancy 148
Table 13-7: Summary of key characteristics for additional voters in TMR data-paths to minimise DCE 151
Table 13-8: Summary of key characteristics for reliability-oriented place and route algorithm 153
Table 13-9: Summary of key characteristics for embedded processor protection155
Table 13-10: Summary of key characteristics for scrubbing of configuration memory 159
Table 14-1: Summary of effects versus mitigation techniques161
Table 14-2: Summary of key characteristics for redundancy at instruction level166
Table 14-3: Summary of key characteristics for redundancy at task level
Table 14-4: summary of key characteristics for redundancy at application level173
Table 15-1: Summary of mitigation techniques at electronic system level and the radiation effects they address
Table 15-2: Summary of key characteristics for shielding 179
Table 15-3: Summary of key characteristics for latching current limiters

Table 15-4: Summary of key characteristics for double duplex architecture	185
Table 15-5: Summary of key characteristics for Triple Modular Redundant system	187
Table 16-1: The different radiation test methods and guidelines	197
Table 16-2: Main features of the radiation sources available for TID testing	203
Table 16-3: Non-exhaustive list of worldwide Gamma ray facilities	204
Table 16-4: Non-exhaustive list of worldwide heavy-ion facilities	204
Table 16-5: Non-exhaustive list of worldwide proton facilities	205
Table 16-6: Non-exhaustive list of worldwide laser test facilities	209
Table 16-7: Summary of the characteristics of laser and microbeams	209

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>SIST-TP CEN/TR 17602-60-02:2022</u> https://standards.iteh.ai/catalog/standards/sist/da72ff37-3c06-4266-a285-58a04dcd6573/sist-tp-cen-tr-17602-60-02-2022