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European Foreword

This document (CEN/TR 17603-20-06:2022) has been prepared by Technical Committee
CEN/CLC/JTC 5 “Space”, the secretariat of which is held by DIN.

It is highlighted that this technical report does not contain any requirement but only collection of data
or descriptions and guidelines about how to organize and perform the work in support of EN 16603-
20.

This Technical report (CEN/TR 17603-20-06:2021) originates from ECSS-E-HB-20-06A.

Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CEN shall not be held responsible for identifying any or all such patent rights.

This document has been prepared under a mandate given to CEN by the European Commission and
the European Free Trade Assodiatiof!

This document has been developed tojcover specifically space;systems and has therefore precedence
over any TR covering the same scope but with'a-wider demain of applicability (e.g.: aerospace).




CEN/TR 17603-20-06:2022 (E)

Introduction

Spacecraft charging occurs due to the deposition of charge on spacecraft surfaces or in internal
materials due to charged particles from the environment. Resulting high voltages and high electric
fields cause electrostatic discharges which are a hazard to many spacecraft systems. Broadly speaking,
spacecraft charging can be divided into surface charging, which is caused by plasma particles with
energy up to several 10s of keV and internal charging which is caused by trapped radiation electrons
with energy around 0,2 MeV and above.

Both surface and internal charging have been associated with malfunctions and damage to spacecraft
systems over many years.
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1
Scope

Common engineering practices involve the assessment, through computer simulation (with software
like NASCAP 0 or SPIS 0), of the levels of absolute and differential potentials reached by space
systems in flight. This is usually made mandatory by customers and by standards for the orbits most
at risk such as GEO or MEO and long transfers to GEO by, for example, electric propulsion.

The ECSS-E-ST-20-06 standard requires the assessment of spacecraft charging but it is not appropriate
in a standard to explain how such an assessment is performed. It is the role of this document ECSS-E-
HB-20-06, to explain in more detail important aspects of the charging process and to give guidance on
how to carry out charging assessment by computer simulation.

The ECSS-E-ST-10-04 standard specifiesimany aspects ofithe/spacé.environment, including the plasma
and radiation characteristics corresponding to worst cases for surface and internal charging. In this
document the use of these environment deseriptions in worst case simulations is described.

The emphasis in this document is.on high level charging in natural environments. One aspect that is
currently not addressed is the'use ot ‘active sources'e.g. for electfic propulsion or spacecraft potential
control. The tools to address this are still being developed and this area can be addressed in a later
edition.
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3

Terms, definitions and abbreviated terms

3.1 Terms from other documents

a. For the purpose of this document, the terms and definitions from ECSS-S5-ST-00-01 apply, in
particular the following terms:

1. environment

3.2 Abbreviated terms

For the purpose of this doctiment,” the"abbréviated ‘terms" from “ECSS-S-ST-00-01 apply and in

particular the following;:

Abbreviation Meaning

AU astronomical unit

BOL beginning-of-life

CAD - computer-aided design

CSDA continuous slowing down approximation
(relating to range of radiation in matter)

EMC electromagnetic compatibility

ESD electrostatic discharge

EOL end-of-life

GDML Geometry Definition Markup Language

GUI graphical user interface

GEO geostationary orbit

GTO geostationary transfer orbit

MEO medium Earth orbit

MLI multi-layer insulation

LANL LoaSAlamos National Laboratory

LEO low Earth orbit

SEE secondary electron emission
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