

ISO
2476

Third edition
1988-12-15

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION
ORGANISATION INTERNATIONALE DE NORMALISATION
МЕЖДУНАРОДНАЯ ОРГАНИЗАЦИЯ ПО СТАНДАРТИЗАЦИИ

Rubber, butadiene (BR) — Solution-polymerized types — Evaluation procedure

Caoutchouc butadiène (BR) — Types polymérisés en solution — Méthode d'évaluation

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for approval before their acceptance as International Standards by the ISO Council. They are approved in accordance with ISO procedures requiring at least 75 % approval by the member bodies voting.

International Standard ISO 2476 was prepared by Technical Committee ISO/TC 45, *Rubber and rubber products*.

This third edition cancels and replaces the second edition (ISO 2476 : 1980). The main technical differences introduced in this new edition of ISO 2476 in comparison with the second edition are as follows:

- a new clause covering sampling and sample preparation has been introduced (clause 3);
- a new clause specifying physical and chemical tests on the raw rubber has been introduced (clause 4);
- the use of an internal mixer for the preparation of the test mix is strongly recommended (see 5.2.2);
- when a mill mixer has to be used, the standard mill batch mass has been reduced to three times the formula mass in order to improve mixing efficiency (see 5.2.2.3);
- alternative vulcanization conditions are made possible, and the conditioning period of vulcanized test slabs has been extended to 96 h (see clause 8);
- a new clause giving the required format for a test report has been introduced (clause 9).

Annex A forms an integral part of this International Standard.

Rubber, butadiene (BR) — Solution-polymerized types — Evaluation procedure

1 Scope

This International Standard specifies

- physical and chemical tests on raw rubbers;
- standard materials, standard test formulae, equipment and processing methods for evaluating the vulcanization characteristics of solution-polymerized butadiene rubbers (BR), including oil-extended types (OEBR).

ISO 1796 : 1982, *Rubber, raw — Sample preparation*.

ISO 2393 : 1973, *Rubber test mixes — Preparation, mixing and vulcanization — Equipment and procedures*.

ISO 3417 : 1977, *Rubber — Measurement of vulcanization characteristics with the oscillating disc curemeter*.

3 Sampling and sample preparation

3.1 A sample of mass approximately 1 500 g shall be taken by the method described in ISO 1795.

3.2 Preparation of the test portion shall be in accordance with ISO 1796.

4 Physical and chemical tests on raw rubber

4.1 Mooney viscosity

Determine the Mooney viscosity in accordance with ISO 289 on a test portion prepared as indicated in ISO 1796, but with the following modification: during the massing process, maintain the mill roll surface temperature at $35^{\circ}\text{C} \pm 5^{\circ}\text{C}$. Record the result as ML (1 + 4) at 100°C .

4.2 Volatile matter

Determine the volatile matter content in accordance with ISO 248.

4.3 Ash content

Determine the ash content in accordance with ISO 247.

2 Normative references

The following standards contain provisions which, through reference in this text, constitute provisions of this International Standard. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this International Standard are encouraged to investigate the possibility of applying the most recent editions of the standards listed below. Members of IEC and ISO maintain registers of currently valid International Standards.

ISO 37 : 1977, *Rubber, vulcanized — Determination of tensile stress-strain properties*.

ISO 247 : 1978, *Rubber — Determination of ash*.

ISO 248 : 1979, *Rubbers, raw — Determination of volatile matter content*.

ISO 289 : 1985, *Rubber, unvulcanized — Determination of Mooney viscosity*.

ISO 471 : 1983, *Rubber — Standard temperatures, humidities and times for the conditioning and testing of test pieces*.

ISO 1795 : 1974, *Raw rubber in bales — Sampling*.

5 Preparation of test mixes for evaluation of butadiene rubbers

5.1 Standard test formulae

The standard test formulae are given in table 1.

The materials shall be NBS^{*)} standard reference materials as indicated in table 1, or other, equivalent national or international standard reference materials.

Table 1 — Standard test formulae for evaluation of BR rubbers

Material	NBS standard reference material number	Parts by mass	
		1 Non-oil-extended	2 Oil-extended
Butadiene rubber (BR)	—	100,00	100,00
Zinc oxide	370	3,00	3,00
Oil furnace black (HAF) ¹⁾	378	60,00	60,00
Stearic acid	372	2,00	2,00
ASTM 103 oil ²⁾	—	15,00	—
Sulfur	371	1,50	1,50
TBBS ³⁾	384	0,90	0,90
Totals		182,40	167,40
Calculated density, Mg/m ³		1,11	1,14 to 1,164)

1) The current Industry Reference Black may be used in place of NBS 378, but this may give slightly different results.

2) This oil, density 0,92 g/cm³, is produced by the Sun Refining and Marketing Company and distributed by R.E. Carroll Inc., P.O.Box 139, Trenton, NJ 08601, USA. Overseas requests should be directed to Sunoco Overseas Inc., 1801 Market Street, Philadelphia, PA 19103, USA. Alternative oils, such as Circosol 4240 or Shellflex 724, are suitable but may give slightly different results.

ASTM 103 oil has the following characteristics:

Kinematic viscosity at 100 °C: 16,8 mm²/s ± 1,2 mm²/s

Viscosity gravity constant: 0,889 ± 0,002

The viscosity gravity constant is calculated from the Saybolt Universal viscosity at 37,8 °C and the relative density at 15,5/15,5 °C. Use the following equation to calculate the VGC from the measured properties:

$$VGC = \frac{10d - 1,075}{10 - \log_{10}(v - 38)}$$

where

d is the relative density at 15,5/15,5 °C;

v is the Saybolt Universal viscosity at 37,8 °C.

3) *N-tert-butyl-2-benzothiazole sulfenamide*. This shall be supplied in powder form having an initial ether- or ethanol-insoluble matter content of less than 0,3 %. The material shall be stored at room temperature in a closed container and the ether- or ethanol-insoluble matter shall be checked every 6 months. If this is found to exceed 0,75 %, the material shall be discarded or recrystallized.

4) Based on 37,5 % oil-extended BR.

5.2 Procedure

5.2.1 Equipment and procedure

Equipment and procedure for the preparation, mixing and vulcanization shall be in accordance with ISO 2393.

Details of a suitable internal mixer are given in annex A.

5.2.2 Mixing procedures

Three mixing procedures are specified.

Method A — Internal mixer for initial and final mixing.

Method B — Internal mixer for initial and mill for final mixing.

Method C — Mill mixing.

NOTE — These procedures may give different results.

The mill handling of solution butadiene rubbers is more difficult than for other rubbers and mixing is best accomplished by using an internal mixer. Because of the difficulty of mill mixing butadiene rubber, it is recommended that one of the internal mixer procedures (method A or B) be used where such equipment is available. With some types of butadiene rubber it is not possible to get a satisfactory mix using the mill mixing procedure.

5.2.2.1 Method A — Internal mixer for initial and final mixing

5.2.2.1.1 Stage 1 — Initial mixing procedure

	Duration (min)	Cumulative time (min)
a) Adjust the temperature, speed and ram pressure of the internal mixer to achieve the conditions outlined in 5.2.2.1.1 e). Close the discharge gate, start the rotor and raise the ram.....	—	—
b) Load one-half of the rubber, the zinc oxide, the carbon black, the oil (omit from formula 2 for OEBR), the stearic acid and the balance of the rubber. Lower the ram.....	0,5	0,5
c) Allow the batch to mix	3,0	3,5
d) Raise the ram and clean the mixer throat and the top of the ram. Lower the ram.....	0,5	4,0
e) Discharge the batch at a temperature of 170 °C or after a total time of 6 min, whichever occurs first	2,0	6,0
Total time (max.)		6,0

^{*)} National Bureau of Standards of the USA.