

International **Standard**

ISO 18183-3

Geometrical product specifications (GPS) — Partition —

Part 3:

Methods used for specification and lar las verification https://standards.iteh.ai)

Spécification géométrique des produits (GPS) — Partition review Partie 3: Méthodes utilisées pour la spécification et la vérification

https://standards.iteh.ai/catalog/standards/iso/c4445d80-30d4-45b4-8be8-2c417dcb46a3/iso-18183-3-2024

First edition

2024-02

Reference number ISO 18183-3:2024(en)

iTeh Standards (https://standards.iteh.ai) Document Preview

ISO 18183-3:2024

https://standards.iteh.ai/catalog/standards/iso/c4445d80-30d4-45b4-8he8-2c417dcb46a3/iso-18183-3-2024

COPYRIGHT PROTECTED DOCUMENT

© ISO 2024

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Con	ntents	Page
	word	
Intro	oduction	v
1	Scope	1
2	Normative references	1
3	Terms and definitions	1
4	Default partition 4.1 General	1
	4.1 General	1
	4.2 Default partition for surfaces	2
	4.2 Default partition for surfaces 4.3 Default partition for lines	3
5	Explicit partition	5
Anne	ex A (informative) Additional information about curvature	7
Anne	ex B (informative) Implementations for the default partition	11
Anne	ex C (informative) Relationship to the GPS matrix model	19
Riblia	iogranhy	20

iTeh Standards (https://standards.iteh.ai) Document Preview

ISO 18183-3:2024

https://standards.iteh.ai/catalog/standards/iso/c4445d80-30d4-45b4-8be8-2c41/dcb46a3/iso-18183-3-2024

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO document should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

ISO draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). ISO takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, ISO had not received notice of (a) patent(s) which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at www.iso.org/patents. ISO shall not be held responsible for identifying any or all such patent rights.

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 213, *Dimensional and geometrical product specifications and verification*, in collaboration with the European Committee for Standardization (CEN) Technical Committee CEN/TC 290, *Dimensional and geometrical product specification and verification*, in accordance with the Agreement on technical cooperation between ISO and CEN (Vienna Agreement).

A list of all parts in the ISO 18183 series can be found on the ISO website.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.

Introduction

This document is a geometrical product specification (GPS) standard and is to be regarded as a general GPS standard (see ISO 14638). It influences chain links B, C and E of the chains of standards on size, distance, form, orientation, location and run-out in the GPS matrix model.

The ISO GPS matrix model given in ISO 14638 gives an overview of the ISO GPS system, of which this document is a part. The fundamental rules of ISO GPS given in ISO 8015 apply to this document and the default decision rules given in ISO 14253-1 apply to specifications made in accordance with this document, unless otherwise indicated.

For more detailed information on the relation of this document to other standards and the GPS matrix model, see Annex C.

This document develops the concepts and methods for default partition of the skin model (in specification) and the sampled surface model (in verification) along with ISO 18183-1¹⁾ and ISO 18183-2.

iTeh Standards (https://standards.iteh.ai) Document Preview

ISO 18183-3:2024

https://standards.iteh.ai/catalog/standards/iso/c4445d80-30d4-45b4-8be8-2c417dcb46a3/iso-18183-3-2024

© ISO 2024 - All rights reserved

¹⁾ Under preparation. Stage at the time of publication: ISO/FDIS 18183-1:2023.

iTeh Standards (https://standards.iteh.ai) Document Preview

ISO 18183-3:2024

https://standards.iteh.ai/catalog/standards/iso/c4445d80-30d4-45b4-8be8-2c417dcb46a3/iso-18183-3-2024

Geometrical product specifications (GPS) — Partition —

Part 3:

Methods used for specification and verification

1 Scope

This document specifies the procedure for the partition operation of geometrical product specification and verification.

This document does not apply to profile and areal surface texture.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 18183-1²⁾, Geometrical product specifications (GPS) — Partition — Part 1: Vocabulary and basic concepts

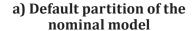
3 Terms and definitions tps://standards.iteh.ai)

For the purposes of this document, the terms and definitions given in ISO 18183-1 apply.

ISO and IEC maintain terminology databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at https://www.iso.org/obp
- IEC Electropedia: available at https://www.electropedia.org/

4 Default partition


4.1 General

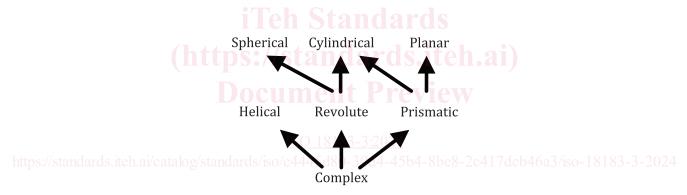
If not otherwise indicated, the default partition shall be that which partitions the skin model (in specification), the nominal model and the sampled surface model (in verification) into single features (single surfaces or single lines). See <u>Figure 1</u>.

For the purposes of this document, a single feature is taken to be of maximum extent. The maximum extent is derived from any combination of length, area, curvature, invariance degree and point set characteristics.

²⁾ Under preparation. Stage at the time of publication: ISO/FDIS 18183-1:2023.

b) Default partition of the skin model (in specification)

c) Default partition of the sampled surface model (in verification)

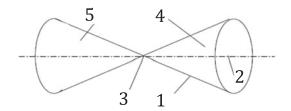

Figure 1 — Default partition

4.2 Default partition for surfaces

If not otherwise indicated, the default partition for surfaces shall be that which partitions the surface into single surfaces. For the purposes of this document, a single surface is taken to be the maximum area possible.

A single surface is a connected surface (a continuous region where any two points can be connected by a path that remains entirely within the surface's boundaries) where no subset of the considered geometric entity exists with an invariance class not respecting the partial ordering of invariance classes (see Figure 2) and, in the case of a surface of revolute invariance class, where its generatrix is a single line.

A single surface is finite (limited in extent).

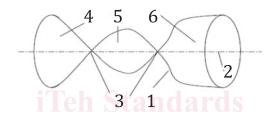


NOTE An upward arrow indicates an increasing freedom in the degree of invariance.

Figure 2 — Partial ordering of the seven invariance classes based on degree of invariance

Where the generatrix intersects the axis of revolution:

- once, each side of the generatrix intersection is considered as a separate single surface (see Figure 3);
- twice or more, the surface between adjacent intersections is considered as a single surface (see Figure 4).



Key

- 1 generatrix
- 2 axis of revolution
- 3 intersection point
- 4 single cone surface, right side
- 5 single cone surface, left side

NOTE The generatrix intersects the axis twice; in this case there are three single surfaces.

Figure 3 — Example of a surface of type cone

Key

- 1 generatrix
- 2 axis of revolution
- 3 intersection point
- 4 single revolute surface, left side
- 5 single revolute surface, middle
- 6 U single revolute surface, right side dards/iso/c4445d80-30d4-45b4-8be8-2c417dcb46a3/iso-18183-3-2024

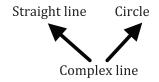
(https://standards.iteh.ai)

ocument Preview

SO 18183-3:2024

NOTE The generatrix intersects the axis twice or more; in this case there are three single surfaces.

Figure 4 — Example of a surface of type revolute


For real surfaces, curvature and slippable motion should be used to determine single surfaces. References to this and other methods can be found in $\underline{Annexes\ A}$ and \underline{B} .

4.3 Default partition for lines

If not otherwise indicated, the default partition for lines shall be that which partitions the line into single lines. For the purposes of this document, a single line is taken to be the longest line possible.

A single line is a connected line where no subset of the considered geometric entity exists with an invariance class not respecting the partial ordering of invariance classes (see <u>Figure 5</u>).

A single line is finite (limited in extent).

NOTE An upwards arrow indicates an increasing freedom in the degree of invariance.

Figure 5 — Partial ordering based on degree of invariance

For real lines, the concept of curvature and slippable motion should be used to determine invariant lines and, hence, single lines. In practice, the straight line is a special case of a circle with zero curvature. Figures 6 to 9 illustrate the partition of a line into single lines through curvature calculation.

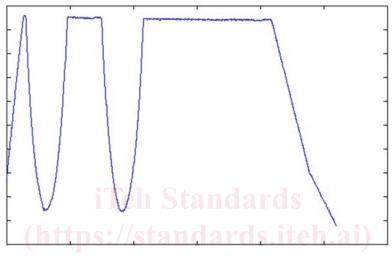


Figure 6 — Original line

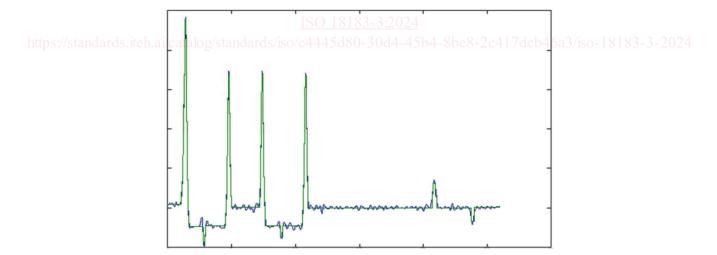


Figure 7 — Calculated curvature from Figure 6 partitioned into single lines