INTERNATIONAL STANDARD ISO 22821 First edition 2021-01 # Carbon-fibre-reinforced composites — Determination of fibre weight content by thermogravimetry (TG) Composites renforcés de fibres de carbone — Détermination de la teneur en masse de fibres par thermogravimétrie (TG) ### iTeh STANDARD PREVIEW (standards.iteh.ai) ISO 22821:2021 https://standards.iteh.ai/catalog/standards/sist/e10304ca-6e73-44cd-b4f3-bdf4be0109da/iso-22821-2021 ### iTeh STANDARD PREVIEW (standards.iteh.ai) ISO 22821:2021 https://standards.iteh.ai/catalog/standards/sist/e10304ca-6e73-44cd-b4f3-bdf4be0109da/iso-22821-2021 #### **COPYRIGHT PROTECTED DOCUMENT** © ISO 2021 All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org Published in Switzerland | Con | itents | Page | |----------------------|---|--------| | Forew | word | iv | | Intro | duction | v | | 1 | Scope | 1 | | 2 | Normative references | 1 | | 3 | Terms and definition | | | 4 | Principle | | | 5 | Reagents | | | 6 | Apparatus — Thermogravimetric analyser | | | 7
8 | Preparation of samples 7.1 Conditioning of samples 7.2 Test specimen Test procedure | 2
2 | | | 8.1 Description of the operating steps8.2 Test processes | | | 9 | Expression of results 9.1 Data recordings and analyses 9.2 Determination of fibre content PREVIEW | 4 | | 10 | Precision Precision | 4 | | 11 | Precision Test report (standards.iteh.ai) | 4 | | Annex | x A (informative) Example of thermogram | 6 | | Annex | x B (informative) Precision An Reproducibility (e10304ca-6e73-44cd-b4f3-bdf4be0109da/iso-22821-2021 | 9 | #### **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives). Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents). Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement. For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html. (standards.iteh.ai) This document was prepared by Technical Committee ISO/TC 61, *Plastics*, Subcommittee SC 13, *Composites and reinforcement fibres*. https://standards.iteh.ai/catalog/standards/sist/e10304ca-6e73-44cd-b4f3- Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html. #### Introduction Methods for the determination of fibre content of carbon fibre reinforced plastics has been established in ISO 14127. The fibre mass in the composite sample is derived by removing the plastic/polymer part in the sample by combustion using burner and the use of strong acid in ISO 14127. These methods are not recommended on the grounds of safety and reagent waste. The determination method of the content of carbon black in the rubber and rubber products is regulated by ISO 9924-3. A thermogravimeter is employed as the apparatus to remove the rubber part of the sample in ISO 9924-3. Currently, thermogravimeters are produced commercially with accuracy, repeatability and reproducibility sufficient for the determination of fibre content in carbon fibre reinforced plastics. In this document, a thermogravimeter is used as the apparatus to remove the plastic/polymer part of the composite sample. ### iTeh STANDARD PREVIEW (standards.iteh.ai) ISO 22821:2021 https://standards.iteh.ai/catalog/standards/sist/e10304ca-6e73-44cd-b4f3-bdf4be0109da/iso-22821-2021 ## iTeh STANDARD PREVIEW (standards.iteh.ai) <u>ISO 22821:2021</u> https://standards.iteh.ai/catalog/standards/sist/e10304ca-6e73-44cd-b4f3-bdf4be0109da/iso-22821-2021 ### Carbon-fibre-reinforced composites — Determination of fibre weight content by thermogravimetry (TG) #### 1 Scope This document specifies a thermogravimetric method for the determination of fibre weight content by weight percent, of carbon fibre reinforced composites. This method applies to pre-products, such as, prepregs, parts and products of carbon fibre reinforced composites. #### 2 Normative references The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 291, Plastics — Standard atmospheres for conditioning and testing ### 3 Terms and definition STANDARD PREVIEW For the purposes of this document, the following terms and definitions apply. ISO and IEC maintain terminological databases for use in standardization at the following addresses: - https://standards.iteh.ai/catalog/standards/sist/e10304ca-6e73-44cd-b4f3-— ISO Online browsing platform: available at https://www.iso.org/obp - IEC Electropedia: available at http://www.electropedia.org/ #### 3.1 #### fibre weight content $W_{\rm f}$ <fibre based composites> ratio of fibre weight to total weight of composite, same as fibre content by weight; expressed as a percentage #### 4 Principle A weighed test specimen is heated following a pre-set programme in a known atmosphere. Initial pyrolysis in an inert atmosphere (nitrogen) is followed by combustion in an oxidizing atmosphere. Generally, the reactions that generate mass variations are decompositions, oxidations, or reactions volatilizing a constituent. Plotting the loss of mass as a function of temperature gives a quantitatively usable thermogram, which is characteristic of the material. #### 5 Reagents **5.1 Nitrogen gas**, of minimal purity 99,995 % mass fraction, with an oxygen content of less than 10 mg/kg (ppm) and hydrocarbon content less than 1,5 mg/kg (ppm). **5.2 Dry air**, with no detectable trace of oil. The air used may be reconstituted nitrogen and oxygen of purity minimum 99,5 % mass fraction. In some cases, pure oxygen may be used. #### 6 Apparatus — Thermogravimetric analyser #### 6.1 General Various types of analyser are commercially available. The basic components of an analyser are listed in 6.2 to 6.8. - **6.2 Thermogravimetric balance**, comprising a microbalance provided with a pan made from a non-oxidizable material, that can weigh up to 50 mg, is readable to the nearest 1 μ g, and equipped with an oven capable of being maintained at temperatures from room temperature to approximately 1 000 °C. - **6.3 Furnace**, allowing the sample to be heated under a specified atmosphere and temperature. - **6.4 Pan or crucible**, with a size suitable to accommodate the sample and small enough to reduce the influence of buoyancy, and without melting to 1 000 °C. Pan or crucible made of platinum or almina is recommended. - 6.5 **Temperature-control system**, allowing heating rates to be controlled from 10 °C/min to 50 °C/min. (standards.iteh.ai) - **6.6 Gas selector**, allowing successive introduction of the inert gas and oxidizing gas while controlling the flow rate. <u>ISO 22821:2021</u> https://standards.iteh.ai/catalog/standards/sist/e10304ca-6e73-44cd-b4f3- - **6.7 Flow valve control and meter**, for controlling gas flow rate in the range 10 cm³/min to 250 cm³/min. - **6.8 Data acquisition and processing system**, allowing temperature and weight data to be recorded and to be analysed during all the operating steps. #### 7 Preparation of samples #### 7.1 Conditioning of samples Test samples should be conditioned in standardized laboratory conditions of temperature and humidity. A quantity of material sufficient to complete the tests is taken as the test sample and conditioned for a sufficient time to re-establish temperature equilibrium. This conditioning shall be carried out in one of the standard atmospheres specified in ISO 291. #### 7.2 Test specimen Prepare a test specimen of $10 \text{ mg} \pm 2 \text{ mg}$ mass cut it as a single piece. They shall be less than 1 mm in thickness and shall be 3 mm to 5 mm in length and width. A number of test specimens should be prepared according to the type of carbon fibre-reinforced plastic type of and purpose of measurement. The test portion should be carefully prepared, since the test portion can influence the kinetics of the phenomena. A number of test pieces depend on the type of CFRP or purposes of measurement. Standard deviation of fibre content measured by thermogravimeter for type of CFRP with weave clothes is almost the same as that measured by combustion (see Annex B). Three samples or more can be enough for CFRP with weave clothes. More than five of test portions can be required for the analysis of distribution of fibre content or CFRP with short fibres. #### 8 Test procedure #### 8.1 Description of the operating steps <u>Table 1</u> gives details of the operating steps for the procedure. Table 1 — Operating steps | | Operating steps | Control limits | Units | |----|--|-------------------------|--------| | 1 | Initial temperature | 35 ± 10 | °C | | 2 | Heating rate under nitrogen | 10 or 20 | °C/min | | 3 | Target temperature under nitrogen | 650 | °C | | 4 | Dwell time at target temperature under nitrogen | 5 or 10 | min | | 5 | Cooling under nitrogen | 650 to 400 | °C | | 6 | Temperature at the change of atmosphere | 400 | °C | | 7 | Dwell time at atmosphere change temperature under air | 10 or 15 | min | | 8 | Heating rate under air ^a | 10 or 20 | °C/min | | 9 | Final temperature under air according to the equipment b | ₇ 800 to 850 | °C | | 10 | Maintenance time at the final temperature under air | 10 to 20 | min | ^a Fix the value for the heating rate under nitrogen and air choose 10 or 20 and keep it constant during the duration of the test. bdf4be0109da/iso-22821-2021 #### 8.2 Test processes **8.2.1** Connect the apparatus and adjust $(\underline{6.6})$ the gas flow to a rate between 20 cm³/min and 250 cm³/min $(\underline{6.7})$. Set the parameters according to the chosen process. In the absence of equipment manufacturer' recommendation, use a flow rate of 100 cm³/min. - **8.2.2** Before the test, ensure that the pan (6.4) or the crucible is clean and empty. - **8.2.3** Close the thermogravimetric balance oven $(\underline{6.2})$, purge with a nitrogen $(\underline{5.1})$ flow at the preset rate. Wait until stabilization. Adjust the zero to compensate for the mass of the pan or the crucible. - **8.2.4** Place the test piece prepared in accordance with Clause 7 in the pan or the crucible and weigh it under the conditions specified in 8.2.3. Record the mass, m_0 . - **8.2.5** Conduct the test by following the operating steps specified in <u>Table 1</u>. - **8.2.6** At the end of the test, allow the oven to cool to room temperature, open it and clean the pan or the crucible. b If procedures do not result in a thermogram that achieves constant mass at final temperature under air, maintain the final temperature condition until constant mass is achieved.