INTERNATIONAL STANDARD

ISO 16964

Second edition 2019-01

Gas cylinders — **Flexible hoses assemblies** — **Specification and testing**

Bouteilles à gaz — Flexibles — Spécifications et essais

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 16964:2019 https://standards.iteh.ai/catalog/standards/sist/d9ee4ee1-d8c5-4216-a3fe-f3ec43396571/iso-16964-2019

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 16964:2019 https://standards.iteh.ai/catalog/standards/sist/d9ee4ee1-d8c5-4216-a3fe-f3ec43396571/iso-16964-2019

COPYRIGHT PROTECTED DOCUMENT

© ISO 2019

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Fax: +41 22 749 09 47 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

ForewordIntroduction				Page	
					1
2	Norr	ormative references		1	
3	Terms and definitions			1	
4	Requirements			2	
	4.1		ction pressure tests		
		4.1.1			
		4.1.2	<u> </u>		
	4.2				
		4.2.1	General	2	
		4.2.2	Burst pressure test (3 samples per type)	3	
		4.2.3	Pressure cycle test (3 samples per type)	3	
		4.2.4	Oxygen compatibility test (3 samples per type)		
		4.2.5	Acetylene compatibility test (3 samples)		
		4.2.6	Gas material compatibility	4	
		4.2.7	Test of the safety cable (2 samples)	4	
		4.2.8	Additional tests	5	
5	Marking iTeh STANDARD PREVIEW				
Ann	ex A (in	ıformativ	re) Examples of kink test, side impact test and torsion test	7	
	ingranl		(standards.iteh.ai)	14	

ISO 16964:2019

https://standards.iteh.ai/catalog/standards/sist/d9ee4ee1-d8c5-4216-a3fe-f3ec43396571/iso-16964-2019

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see www.iso.org/iso/foreword.html. (standards.iteh.ai)

This document was prepared by Technical Committee ISO/TC 58, *Gas cylinders*, Subcommittee SC 2, *Cylinder fittings*.

ISO 16964:2019

https://standards.iteh.ai/catalog/standards/sist/d9ee4ee1-d8c5-4216-a3fe-

This second edition cancels and replaces the first edition (ISO 16964:2015), which has been technically revised.

The main changes compared to the previous edition are as follows:

- Test 1 for the safety cable has been clarified;
- the leak test has been corrected;
- the pressure cycle test has been clarified;
- the test apparatus for the torsion test, as shown in <u>Figures A.6</u> and <u>A.7</u> has been clarified.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.

Introduction

Flexible hose assemblies are used to transfer industrial and medical gases into cylinders, bundles, MEGCs and trailers (battery vehicles), and also to supply such gases to user equipment.

There is a range of existing International Standards to be used for specific applications or hose construction:

- ISO 14113 which covers hoses made with internal rubber or plastics tubing and used to supply gases to customers for welding applications;
- ISO 21969 which covers hoses with an internal corrugated metallic liner and used to supply medical gases to customers;
- ISO 10380 which covers hoses with internal corrugated metallic liner for all applications including non-industrial and medical gases.

ISO 14113 and ISO 21969 cover only specific customer applications and are intended to be used accordingly, while ISO 10380 is general in its approach.

The intent of the document is to describe flexible hoses not defined in the specific applications documents mentioned above.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 16964:2019 https://standards.iteh.ai/catalog/standards/sist/d9ee4ee1-d8c5-4216-a3fe-f3ec43396571/iso-16964-2019

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 16964:2019 https://standards.iteh.ai/catalog/standards/sist/d9ee4ee1-d8c5-4216-a3fe-f3ec43396571/iso-16964-2019

Gas cylinders — Flexible hoses assemblies — Specification and testing

1 Scope

This document provides specification and testing requirements for high pressure flexible hose assemblies intended to be connected to gas cylinders, bundles of cylinders or trailers (battery vehicles), and MEGCs for use when filling and emptying gas at production sites and also for customer use. This document applies to flexible hose assemblies with rated pressures up to 1 000 bar for use in the temperature range of $-40\,^{\circ}\text{C}$ to $+65\,^{\circ}\text{C}$.

This document is not applicable to:

- rubber and plastics flexible hose assemblies for welding, cutting and related processes up to 45 MPa (450 bar) for customer use (see ISO 14113);
- high pressure flexible hose assemblies for use with medical gas systems for customer use (see ISO 21969);
- low pressure hose assemblies for use with medical gases for customer use (see ISO 5359);
- rubber and thermoplastic low pressure hose assemblies for welding, cutting and related processes for customer use (see ISO 3821 or ISO 12170); iteh.ai
- flexible hose assemblies for cryogenic applications (see ISO 21012);
- flexible hose assemblies for liquid petroleum gas (LPG)_{ce1-d8c5-4216-a3fe}

NOTE Flexible hose assembly designs which pass the type test approval described in this document can have a lower ratio of burst pressure to rated pressure than stated in other standards.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 148-1, Metallic materials — Charpy pendulum impact test — Part 1: Test method

ISO 10286, Gas cylinders — Terminology

ISO 10380, Pipework — Corrugated metal hoses and hose assemblies

ISO 14113:2013, Gas welding equipment — Rubber and plastics hose and hose assemblies for use with industrial gases up to 450 bar (45 MPa)

ISO 21969:2009, High-pressure flexible connections for use with medical gas systems

3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 10286 and the following apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

ISO Online browsing platform: available at https://www.iso.org/obp

ISO 16964:2019(E)

IEC Electropedia: available at http://www.electropedia.org/

3.1

rated pressure

PR

pressure of a hose assembly equal to 1,25 PW, PW being the working pressure of the cylinder as defined in ISO 10286

Note 1 to entry: National and international design codes for pressure systems can specify a higher value of rated pressure.

Note 2 to entry: When cylinders are used (e.g. during filling or product withdrawal), the gas temperature can be higher than 15 °C. This is the reason why the rated pressure is higher than the cylinder working pressure.

3.2

burst pressure

highest pressure reached in a flexible hose assembly during a burst test

4 Requirements

4.1 Production pressure tests

4.1.1 Strength test

Each flexible hose assembly shall first be subjected to a strength test using oil-free water at a pressure at least equal to 1,5 times the rated pressure, PR, for a minimum of 3 min. There shall be no visible sign of leakage, permanent deformation of other sign of failure. Where hydraulic testing would result in unacceptable contamination of the flexible hose assembly, the hydraulic test may be replaced by a pneumatic test using a compatible medium such as dry oil-free air or nitrogen. Appropriate safety measures shall be taken to protect personnel and equipment during testing 16-a3fe-

f3ec43396571/iso-16964-2019

4.1.2 Leak test

Each hose or hose assembly shall be tested for leakage, e.g. by total immersion in water for 3 min at ambient temperature, at a test pressure equal to the PR, except for acetylene where the test pressure shall be no less than 300 bar.

Hose or hose assemblies to be used with hydrogen or helium shall be tested with helium. Hose or hose assemblies to be used with other gases shall be tested with a compatible medium such as dry oil-free air or nitrogen.

The leak rate shall be less than 15 cm³/h.

4.2 Type tests

4.2.1 General

All test samples shall be manufactured to the same design, material specification and from the same batch of raw material. Records of the tests performed are to be retained by the flexible hose assembly manufacturer.

To carry out the tests described in this document, it is recommended that the nominal length of hose between end fittings be 1 000 mm unless otherwise specified.

Before being type tested, all sample flexible hose assemblies shall be subjected to production pressure tests as specified in 4.1.

For hoses to be used in hydrogen or helium service, the leak test in 4.1.2 shall be carried out using helium.

Tests shall be performed at ambient temperature.

4.2.2 Burst pressure test (3 samples per type)

The flexible hose assembly complete with safety cable and clamps (if applicable), is to be hydraulically pressurized until burst occurs. The pressurization rate shall be adjusted at the beginning of the test to be approximately constant and to reach the burst pressure in not less than 1 min.

For specific applications, hold steps may be required before final burst pressure is reached.

The burst pressure of the flexible hoses assemblies shall not be less than $3 \times PR$ for a value of PR less than 480 bar and $[(2 \times PR) + 480]$ bar for a value of PR greater than or equal to 480 bar.

NOTE For acetylene service, hose with a higher burst pressure can be necessary in order to pass the decomposition test described in <u>4.2.5</u> for acetylene flexible hose assemblies. The minimum burst pressure for this type of hose is generally given by the hose manufacturer.

4.2.3 Pressure cycle test (3 samples per type)

4.2.3.1 **General**

The flexible hose assembly complete with safety cable and clamps (if applicable) shall be submitted to a hydraulic pressurization endurance test from a nominal atmospheric pressure (5 bar maximum) to PR at a frequency of no more than 30 cycles per minute.

A pressure cycle consists of a pressure increase starting from a pressure not more than 5 bar to PR and a pressure decrease from PR back to the start condition.

This endurance test shall not apply to acetylene flexible hose assemblies because the construction of these hoses is designed to resist extremely high pressure and stress compared to acetylene's low working pressure PMps://standards.iteh.ai/catalog/standards/sist/d9ee4ee1-d8c5-4216-a3fe-f3ec43396571/iso-16964-2019

4.2.3.2 General requirement

It shall be checked that the entire flexible hose assembly is exposed to a pressure cycle where:

- the maximum pressure is PR; and
- the minimum of each pressure cycle is no more than 5 bar.

The flexible hose assemblies shall not burst or show any visible leak during the test:

- Category A: 5 000 pressure cycles for flexible hose assemblies dedicated to non-filling applications such as customer installations. This applies to flexible hose assemblies with metallic and nonmetallic liners.
- Category B: 50 000 pressure cycles for flexible hose assemblies with non-metallic liners dedicated to filling centres.

Due to expansion of the hose during the test, the hydraulic pressure can fall. However, the hydraulic pressure shall never fall below PR.

Care should be taken to avoid hose bending during testing as this can reduce the cycle life. The position of the hose during the cycle test should be recorded (e.g. pictures).

4.2.3.3 Specific requirements for metallic hoses used in filling centres

The pressure cycle test shall be performed on hose assemblies with a maximum of $50\,000$ cycles. No failure should occur before $10\,000$ cycles.

ISO 16964:2019(E)

A leak is accepted above 10 000 cycles but, in such cases, the life of the hose shall be limited proportionally to its performance in this hydraulic pressure cycling test.

Hoses not able to pass the 10 000 pressure cycles minimum requirement, but demonstrating by this test a non-hazardous failure mode, can be used in service following risk assessment provided that the risk assessment includes as a minimum:

- the definition of a specific application;
- the mode of failure of the hose and any mitigation;
- the associated risk created by the escape of gas;
- the protection of personnel.

Following such risk assessment, the life span for the hose can be determined (e.g. use for a given time or until the flexible hose assembly leaks).

If the test has been completed before any leak has been detected (e.g. after 50 000 cycles), then the flexible hose assembly shall be pressurized at PR with compressed dry oil-free air or nitrogen to check for leaks. The leak rate shall be less than $15 \text{ cm}^3/\text{h}$. For hoses to be used in hydrogen or helium service, the leak test shall be carried out using helium.

4.2.4 Oxygen compatibility test (3 samples per type)

This test shall be performed for all oxygen applications. Follow the procedure given in ISO 21969:2009, 6.2.4.

4.2.5 Acetylene compatibility test (3 samples) (standards.iteh.ai)

This test shall be performed for all acetylenel applications. Follow the procedure given in ISO 14113:2013, 7.1.2. https://standards.iteh.ai/catalog/standards/sist/d9ee4ee1-d8c5-4216-a3fe-f3ec43396571/iso-16964-2019

Flexible hose assemblies passing this test shall be marked to identify they are suitable for acetylene service e.g. "C2H2" or as specified by ISO 14113.

4.2.6 Gas material compatibility

All materials in contact with the gases shall be compatible within the intended pressure and temperature range of the gas application. For guidance, use the requirements of ISO 11114-1 and ISO 11114-2 as applicable.

4.2.7 Test of the safety cable (2 samples)

4.2.7.1 General

This test shall be performed if the flexible hose assembly is equipped with a safety cable. For safety reasons, it is recommended to perform this test in a cage to protect personnel. The hose and the cable shall be fixed. The distance between the horizontal fixed points of the hose ends shall be equal to 75 % of the hose length so that the hose has a gentle bend and is not tight between the fixed points.

If the safety cable is designed to be anchored separately to the hose end fitting, cable ends shall be anchored as they would be in customer use. If not otherwise specified, the safety cable shall be fixed as per the instructions for use.

If hose end fittings are not of the same design (are not identical), the manufacturer shall indicate the upstream fitting the gas will be put through during the test.

The downstream fixed point of the flexible hose shall be plugged.

4.2.7.2 Test 1

The flexible hose assembly is severed by drilling a hole at mid-length on one side without damaging the safety cable or disturbing the clamps. The diameter of the drilled hole shall be equal to 80 % of the internal nominal diameter, DN, of the flexible hose assembly. Air or nitrogen is admitted at PR via a quick opening valve into the hose through one of the end fittings while the other end is open to atmosphere. The gas supplied is cut off not less than 10 s after opening. The cable and its fixings shall be intact and the clamps shall have remained in their original positions on the hose. Their location is recorded before and after testing. The clamps shall remain fixed on the cable but their location can be different. A movement of ±2,5 cm along the hose is accepted.

4.2.7.3 Test 2

4.2.8.2

A similar test is performed if the safety cable is secured to the hose end fittings. In this case, the flexible hose assembly is severed by drilling the same size hole as in Test 1 but immediately adjacent to the end fitting at the opposite end of the hose to where the test gas is admitted. The same acceptance criteria as in Test 1 shall be used.

If the safety cable is designed to be anchored separately to the hose end fitting, the test is performed with the same requirements and acceptance criteria as above but with the end adjacent to the drilling plugged and not anchored.

The plug (mass and dimensions) should be recorded in the report.

4.2.8 Additional tests eh STANDARD PREVIEW

4.2.8.1 General (standards.iteh.ai)

These tests (see Annex A) are part of the type tests when listed as mandatory in 4.2.8.2 to 4.2.8.7.

https://standards.iteh.ai/catalog/standards/sist/d9ee4ee1-d8c5-4216-a3fe-**Kink test (1 sample)** f3ec43396571/iso-16964-2019

This test (see A.1) is mandatory for non-metallic lined flexible hose assemblies except when other kink prevention safety measures are in place (e.g. external spring protection).

NOTE This test is normally performed by the hose manufacturer, and not necessarily by the hose assembly manufacturer.

With the flexible hose assembly configured with a single loop midway along its length, and with one end connection secured, a longitudinal tensile force shall be applied to the opposite end to create a localized bend and flattening. The tensile force is increased until the cross-section of the hose becomes oval and the shortest cross-sectional dimension is 75 % of the original external diameter. This force shall be recorded. When it is completed, a hydraulic pressure of PR shall be applied and there shall be no leakage evident.

4.2.8.3 Side impact test (1 sample)

This test (see A.2) is mandatory for non-metallic lined flexible hose assemblies with copper alloys or with low impact strength material end fittings except when other side impact prevention safety measures are in place (e.g. external spring protection).

The flexible hose assembly is fixed as specified in <u>A.2.3.3</u>. The impact energy is created with a knife edge impact tool to determine the absorbed energy for failure. Any rupture or crack is classed as a failure. This test shall be repeated at the other extremity (if different) to find the weakest side. The impact energies of both ends should be recorded.