

SLOVENSKI STANDARD SIST EN IEC 61400-50-2:2022

01-december-2022

Sistemi za proizvodnjo energije na veter - 50-2. del: Meritve vetra - Uporaba talne tehnologije za daljinsko zaznavanje (IEC 61400-50-2:2022)

Wind energy generation systems - Part 50-2: Wind measurement - Application of ground-mounted remote sensing technology (IEC 61400-50-2:2022)

Windenergieanlagen - Teil 50-2: Windmessungen - Anwendung der bodengestützten Fernerkundungstechnologie (IEC 61400-50-2:2022)

Systèmes de génération d'énergie éolienne - Partie 50-2: Mesurage du vent - Application de la technologie de télédétection montée au sol (IEC 61400-50-2:2022)

Ta slovenski standard je istoveten z: EN IEC 61400-50-2:2022

ICS:

27.180 Vetrne elektrarne Wind turbine energy systems

SIST EN IEC 61400-50-2:2022 en

SIST EN IEC 61400-50-2:2022

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>SIST EN IEC 61400-50-2:2022</u> rh.ai/catalog/standards/sist/69bd2476-e774-4857-a EUROPEAN STANDARD NORME EUROPÉENNE EN IEC 61400-50-2

FUROPÄISCHE NORM

October 2022

ICS 27.180

English Version

Wind energy generation systems - Part 50-2: Wind measurement - Application of ground-mounted remote sensing technology

(IEC 61400-50-2:2022)

Systèmes de génération d'énergie éolienne - Partie 50-2: Mesurage du vent - Application de la technologie de télédétection montée au sol (IEC 61400-50-2:2022) Windenergieanlagen - Teil 50-2: Windmessungen -Anwendung der bodengestützten Fernerkundungstechnologie (IEC 61400-50-2:2022)

This European Standard was approved by CENELEC on 2022-10-04. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.

Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CENELEC member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Türkiye and the United Kingdom.

European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

EN IEC 61400-50-2:2022 (E)

European foreword

The text of document 88/829/CDV, future edition 1 of IEC 61400-50-2, prepared by IEC/TC 88 "Wind energy generation systems" was submitted to the IEC-CENELEC parallel vote and approved by CENELEC as EN IEC 61400-50-2:2022.

The following dates are fixed:

- latest date by which the document has to be implemented at national (dop) 2023-07-04 level by publication of an identical national standard or by endorsement
- latest date by which the national standards conflicting with the (dow) 2025-10-04 document have to be withdrawn

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CENELEC shall not be held responsible for identifying any or all such patent rights.

Any feedback and questions on this document should be directed to the users' national committee. A complete listing of these bodies can be found on the CENELEC website.

Endorsement notice

The text of the International Standard IEC 61400-50-2:2022 was approved by CENELEC as a European Standard without any modification.

In the official version, for Bibliography, the following note has to be added for the standard indicated:

IEC 61400-12-1:2017 NOTE Harmonized as EN 61400-12-1:2017 (not modified)

EN IEC 61400-50-2:2022 (E)

Annex ZA (normative)

Normative references to international publications with their corresponding European publications

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

NOTE 1 Where an International Publication has been modified by common modifications, indicated by (mod), the relevant EN/HD applies.

NOTE 2 Up-to-date information on the latest versions of the European Standards listed in this annex is available here: www.cenelec.eu.

 Publication
 Year
 Title
 EN/HD
 Year

 IEC 61400-50-1
 Wind energy generation systems - Part 50- EN IEC 61400-50-11 - 1: Wind Measurement - Application of Meteorological Mast, Nacelle and Spinner Mounted Instruments

 IEC 61400-50-1

 Standards item at

<u>SIST EN IEC 61400-50-2:2022</u> https://standards.iteh.ai/catalog/standards/sist/69bd2476-e774-4857-a10f-b70da7eb3f8e/sist-en-iec-61400-50-2-2022

_

¹ Under preparation. Stage at the time of publication: FprEN IEC 61400-50-1:2022.

SIST EN IEC 61400-50-2:2022

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>SIST EN IEC 61400-50-2:2022</u> rh.ai/catalog/standards/sist/69bd2476-e774-4857-a

IEC 61400-50-2

Edition 1.0 2022-08

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Wind energy generation systems – A Part 50-2: Wind measurement – Application of ground-mounted remote sensing technology

Systèmes de génération d'énergie éolienne — 222022

Partie 50-2: Mesurage du vent — Application de la technologie de télédétection montée au sol

INTERNATIONAL ELECTROTECHNICAL COMMISSION

COMMISSION ELECTROTECHNIQUE INTERNATIONALE

ICS 27.180 ISBN 978-2-8322-5602-2

Warning! Make sure that you obtained this publication from an authorized distributor.

Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé.

CONTENTS

FOREWO	DRD	4		
	JCTION			
1 Sco	pe	7		
2 Norr	native references	7		
3 Terr	ns and definitions	7		
4 Sym	bols, units and abbreviated terms	10		
5 Gen	eral	11		
6 Clas	sification of RSDs	13		
6.1	General	13		
6.2	Data acquisition	14		
6.3	Data preparation	15		
6.4	Principle and requirements of a sensitivity test	15		
6.5	Assessment of environmental variable significance			
6.6	Assessment of interdependency between environmental variables			
6.7	Calculation of accuracy class			
6.8	Acceptance criteria			
6.9	Classification of RSD			
7 Veri	fication of the performance of RSDs	27		
8 Eval	uation of uncertainty of measurements by RSDs			
8.1	General (Standards Iteh ai)			
8.2	Reference uncertainty			
8.3	Uncertainty resulting from the RSD calibration test			
8.4	Uncertainty due to RSD classification			
8.5	Uncertainty due to non-homogenous flow within the measurement volume			
8.6	Uncertainty due to mounting effects			
8.7	Combining uncertainties in the wind speed measurement from RSD $(u_{ m VR},i)$			
9 Add	tional checks	34		
9.1	Monitoring the performance of the RSD at the application site			
9.2	Identification of malfunctioning of the RSD			
9.3	Consistency check of the assessment of the RSD systematic uncertainties			
9.4	In-situ test of the RSD			
	ication to SMC			
11 Rep	orting	36		
11.1	Common reporting on classification test, calibration test, and monitoring of the RSD during SMC	36		
11.2	Additional reporting on classification test	37		
11.3	Additional reporting on calibration test			
11.4	Additional reporting on SMC	38		
	Annex A (informative) Uncertainty due to non-homogenous flow within the measurement volume			
	Bibliography			
Dibliogra	γ''y			
	– Tilt angular response $V_{lpha}\!\!\!/V_{lpha=0}$ of a cup anemometer as a function of flow			
angle α	ompared to cosine response (IEC 61400-50-1)	17		

Figure 2 – Deviation versus upflow angle determined for an RSD with respect to the cup anemometer in Figure 1	17
Figure 3 – Example of sensitivity analysis against wind shear	19
Figure 4 – Example of wind shear versus turbulence intensity	23
Figure 5 – Example of percentage deviation of RSD and reference sensor measurements versus turbulence intensity	23
Figure 6 – Comparison of 10 min averages of the horizontal wind speed component as measured by an RSD and a cup anemometer	29
Figure 7 – Bin-wise comparison of measurement of the horizontal wind speed component of an RSD and a cup anemometer	29
Table 1 – Interfaces from other standards to IEC 61400-50-2	12
Table 2 – Interfaces from IEC 61400-50-2 to other standards	12
Table 3 – Bin width example for a list of environmental variables	18
Table 4 – Parameters derived from a sensitivity analysis of an RSD	20
Table 5 – Ranges of environmental parameters for sensitivity analysis	21
Table 6 – Example selection of environmental variables found to have a significant influence	22
Table 7 – Sensitivity analysis parameters remaining after analysis of interdependency of variables	24
Table 8 – Example scheme for calculating maximum influence of environmental variables	25
Table 9 – Preliminary accuracy classes of an RSD considering both all and only the most significant influential variables	26
Table 10 – Example final accuracy classes of an RSD	26
Table 11 – Example of uncertainty calculations arising from calibration of an RSD in terms of systematic uncertainties	31

IEC 61400-50-2:2022 © IEC 2022

INTERNATIONAL ELECTROTECHNICAL COMMISSION

WIND ENERGY GENERATION SYSTEMS -

Part 50-2: Wind measurement – Application of ground-mounted remote sensing technology

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

IEC 61400-50-2 has been prepared by IEC technical committee 88: Wind energy generation systems. It is an International Standard.

This first edition of IEC 61400-50-2 is part of a structural revision that cancels and replaces the performance standards IEC 61400-12-1:2017 and IEC 61400-12-2:2013. The structural revision contains no technical changes with respect to IEC 61400-12-1:2017 and IEC 61400-12-2:2013, but the parts that relate to wind measurements, measurement of site calibration and assessment of obstacle and terrain have been extracted into separate standards.

The purpose of the re-structure was to allow the future management and revision of the power performance standards to be carried out more efficiently in terms of time and cost and to provide a more logical division of the wind measurement requirements into a series of separate standards which could be referred to by other use case standards in the IEC 61400 series and subsequently maintained and developed by appropriate experts.

_ 1 _

IEC 61400-50-2:2022 © IEC 2022

- 5 -

The text of this International Standard is based on the following documents:

Draft	Report on voting
88/829/CDV	88/865/RVC

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this International Standard is English.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/publications.

A list of all parts in the IEC 61400 series, published under the general title *Wind energy generation systems*, can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

- reconfirmed, Tah STANDARD PRRVIRW
- withdrawn,
- replaced by a revised edition, or 10 2 rd S. Itch. 21)
- amended.

SIST EN IEC 61400-50-2:2022

https://standards.iteh.ai/catalog/standards/sist/69bd2476-e774-4857-a10f-

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

IEC 61400-50-2:2022 © IEC 2022

INTRODUCTION

- 6 **-**

This part of IEC 61400 specifies procedures and methods which ensure that wind measurements using ground-mounted remote sensing devices are carried out and reported consistently and in accordance with best practice. This document does not define the purpose or use case of the wind measurements. However, as this document forms part of the IEC 61400 series of standards, it is anticipated that the wind measurements will be used in relation to some form of wind energy testing or resource assessment.

The main clauses of this document are not mutually dependent. Therefore, it is possible that a user will refer to only certain of the main clauses rather than all clauses to adapt this document to their specific use case. However, the main clauses are presented in a logical sequence that could be applied in practice.

The technical content of this document could previously be found in IEC 61400-12-1:2017 [1]¹. Because of the increasing complexity of this source document, IEC TC 88 decided that a restructuring of the IEC 61400-12 series of standards into a number of more specific parts would allow more efficient management and maintenance going forward. This document has been created as part of that re-structuring process.

iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST EN IEC 61400-50-2:2022 https://standards.iteh.ai/catalog/standards/sist/69bd2476-e774-4857-a10f-b70da7eb3f8e/sist-en-iec-61400-50-2-2022

¹ Numbers in square brackets refer to the Bibliography.

WIND ENERGY GENERATION SYSTEMS -

Part 50-2: Wind measurement – Application of ground-mounted remote sensing technology

1 Scope

IEC 61400-50 specifies methods and requirements for the application of instruments to measure wind speed (and related parameters, e.g. wind direction and turbulence intensity). Such measurements are required as an input to some of the evaluation and testing procedures for wind energy and wind turbine technology (e.g. resource evaluation and turbine testing) described by other standards in the IEC 61400 series. This document is applicable specifically to the use of ground-mounted remote sensing wind measurement instruments, i.e. devices which measure the wind at some location generally above and distant from the location at which the instrument is mounted (e.g. sodars, vertical profiling lidars). This document specifically excludes other types of RSD such as forward facing or scanning lidars. This document specifies the following:

- a) the procedure and requirements for classifying ground-based RSDs in order to assess the uncertainty pertaining from sensitivity of the RSD response to meteorological conditions that can vary between the RSD calibration place and time and the use case (specific measurement campaign SMC) place and time;
- b) the procedures and requirements for calibration of RSDs;
- c) the assessment of wind speed measurement uncertainty;
- d) additional checks of the RSD performance and measurement uncertainty during the SMC;
- e) application of the wind speed uncertainty derived from the RSD calibration and classification to the measurements taken during the SMC (e.g. interpolation of uncertainty or calibration results to different heights);
- f) requirements for reporting.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 61400-50-1, Wind energy generation systems – Part 50-1: Wind measurement – Application of meteorological mast, nacelle and spinner mounted instruments

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- IEC Electropedia: available at https://www.electropedia.org/
- ISO Online browsing platform: available at https://www.iso.org/obp