

SLOVENSKI STANDARD oSIST prEN IEC 60071-2:2022

01-julij-2022

Koordinacija izolacije - 2. del: Smernice za uporabo (predlagan h	norizontalni
standard)	

Insulation co-ordination - Part 2: Application guidelines (Proposed horizontal standard)

iTeh STANDARD

Coordination de l'isolement - Partie 2: Lignes directrices en matière d'application

Ta slovenski standard je istoveten z: prEN IEC 60071-2:2022

100.	<u>oSIST prl</u> https://standards.iteh.a Sana 4a4a 0abb 8402	<u>EN IEC 60071-2:2022</u> i/catalog/standards/sist/77d46b6a- f4d8aa48/aaist gron iso 60071-2
<u>103:</u> 29.080.01	Električna izolacija na splošno	²⁰ Electrical insulation in general

oSIST prEN IEC 60071-2:2022

en

iTeh STANDARD PREVIEW (standards.iteh.ai)

oSIST prEN IEC 60071-2:2022 https://standards.iteh.ai/catalog/standards/sist/77d46b6a-8aee-4c4c-9cbb-8493f4d8cc48/osist-pren-iec-60071-2-2022

99/356/CDV

COMMITTEE DRAFT FOR VOTE (CDV)

PROJECT NUMBER:	
IEC 60071-2 ED5	
DATE OF CIRCULATION:	CLOSING DATE FOR VOTING:
2022-05-06	2022-07-29
SUPERSEDES DOCUMENTS:	
99/319/CD, 99/352/CC	

IEC TC 99 : Insulation co-ordination and system engineering κV AC and 1,5 κV DC	OF HIGH VOLTAGE ELECTRICAL POWER INSTALLATIONS ABOVE 1,0
SECRETARIAT:	Secretary:
Australia	Ms Erandi Chandrasekare
OF INTEREST TO THE FOLLOWING COMMITTEES:	PROPOSED HORIZONTAL STANDARD:
TC 8,TC 11,TC 14,TC 17,SC 17A,SC 17C,TC 20,TC	
22,SC 22F,SC 22G,TC 33,TC 36,TC 37,TC 38,TC 42,TC 115.TC 122	Other TC/SCs are requested to indicate their interest, if any, in
iTeh STA	this CDV to the secretary.
FUNCTIONS CONCERNED:	
	NOT SUBMITTED FOR CENELEC PARALLEL VOTING
Attention IEC-CENELEC parallel voting	
The attention of IEC National Committees, members of CENELEC, is drawn to the fact that this committee Draft for Vote (CDV) is submitted for parallel voting9cbb-8493f4d8c	<u>C 60071-2:2022</u> og/standards/sist/77d46b6a- c48/osist-pren-iec-60071-2-
The CENELEC members are invited to vote through the CENELEC online voting system. $\begin{array}{c} 20\\ \end{array}$	22

This document is still under study and subject to change. It should not be used for reference purposes.

Recipients of this document are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.

TITLE:

Insulation co-ordination - Part 2: Application guidelines (Proposed horizontal standard)

PROPOSED STABILITY DATE: 2027

NOTE FROM TC/SC OFFICERS:

Copyright © **2022 International Electrotechnical Commission, IEC**. All rights reserved. It is permitted to download this electronic file, to make a copy and to print out the content for the sole purpose of preparing National Committee positions. You may not copy or "mirror" the file or printed version of the document, or any part of it, for any other purpose without permission in writing from IEC.

– 2 –

1

CONTENTS

2				
3	FC	OREWC	PRD	9
4	1	Scop	e	11
5	2	Norm	native references	11
6	3	Term	ns. definitions. abbreviated terms and symbols	12
7		3 1	Terms and definitions	12
8		3.2	Abbreviated terms	12
9		3.3	Symbols	12
10	4	Cond	cepts governing the insulation co-ordination	17
11	5	Repr	esentative voltage stresses in service	18
12	-	5 1	Origin and classification of voltage stresses	18
13		5.2	Characteristics of overvoltage protection devices	19
14		5.2.1	General remarks	19
15		5.2.2	Metal-oxide surge arresters without gaps (MOSA)	19
16		5.2.3	Line surge arresters (LSA) for overhead transmission and distribution	
17			lines	21
18 19		5.3	General approach for the determination of representative voltages and overvoltages	22
20		5.3.1	Continuous (power-frequency) voltage	22
21		5.3.2	P. Temporary overvoltages	22
22		5.3.3	Slow-front overvoltages	25
23		5.3.4	Fast-front overvoltages	31
24		5.3.5	Very-fast-front overvoltages	35
25		5.4	Determination of representative overvoltages by detailed simulations	36
26		5.4.1	General overview General Catalog/Standards/Sist/7/d4000a-	36
27		5.4.2	2 Temporary overvoltages	36
28		5.4.3	Slow-front overvoltages	37
29		5.4.4	Fast-front overvoltages	38
30		5.4.5	Very-fast-front Overvoltages	42
31	6	Co-o	rdination withstand voltage	43
32		6.1	Insulation strength characteristics	43
33		6.1.1	General	43
34		6.1.2	Influence of polarity and overvoltage shapes	44
35		6.1.3	Phase-to-phase and longitudinal insulation	45
36		6.1.4	Influence of weather conditions on external insulation	45
37		6.1.5	Probability of disruptive discharge of insulation	46
38		6.2	Performance criterion	47
39		6.3	Insulation co-ordination procedures	48
40		6.3.1	General	48
41 ⊿2		6.3.2	Insulation co-ordination procedures for continuous (power-frequency)	40
42		633	Insulation co-ordination procedures for slow-front overvoltages	49
44		6.3.4	Insulation co-ordination procedures for fast-front overvoltages	
45		6.3.5	Insulation co-ordination procedures for verv-fast-front overvoltages	55
46	7	Rear	lired withstand voltage	
47	-	7.1	General remarks	55
48		7.2	Atmospheric correction	
			1	

49	7.2.1	General remarks	55
50	7.2.2	Altitude correction	56
51	7.3 Saf	fety factors	57
52	7.3.1	General	57
53	7.3.2	Ageing	
54	7.3.3	Production and assembly dispersion	
55	7.3.4	Inaccuracy of the withstand voltage	
56	735	Recommended safety factors (K_{a})	58
57	8 Standard	withstand voltage and testing precedures	59
57		noral remarka	50 50
58	0.1 Ge		
59	0.1.1	Overview	
60	8.1.2	Standard switching impulse withstand voltage	
61	8.1.3	Standard lightning impulse withstand voltage	
62	8.2 les	st conversion factors	60
63	8.2.1	Range I	60
64	8.2.2	Range II	60
65	8.3 Det	termination of insulation withstand by type tests	61
66	8.3.1	Test procedure dependency upon insulation type	61
67	8.3.2	Non-self-restoring insulation	61
68	8.3.3	Self-restoring insulation S.I.I.A.I.N.I.I.A.I.R.I.I.	61
69	8.3.4	Mixed insulation	61
70	8.3.5	Limitations of the test procedures	63
71	8.3.6	Selection of the type test procedures	63
72	8.3.7	Selection of the type test voltages itch ai	63
73	9 Special o	considerations for apparatus and transmission line	64
74	9.1 Ove	erhead line	64
75	911	General av Vatan danda itala ai vasta la aviatan danda viat 177 d 16h 6a	64
76	9.1.1	Insulation coverdination for operating voltages and temporary	
77	5.1.2	overvoltages	64
78	9.1.3	Insulation co-ordination for slow-front overvoltages	65
79	9.1.4	Insulation co-ordination for fast-front overvoltages	65
80	9.2 Cal	ble line	
81	9.2.1	General	66
82	922	Insulation co-ordination for operating voltages and temporary	
83	0.2.2	overvoltages	67
84	9.2.3	Insulation co-ordination for slow-front overvoltages	67
85	9.2.4	Insulation co-ordination for fast-front overvoltages	67
86	9.2.5	Overvoltage protection of cable lines	68
87	9.3 GII	(gas insulated transmission line) / GIB (Gas-insulated busduct)	68
88	931	General	68
80	932	Insulation co-ordination for operating voltages and temporary	
90	0.0.2	overvoltages	68
91	9.3.3	Insulation co-ordination for slow-front overvoltages	69
92	9.3.4	Insulation co-ordination for fast-front overvoltages	69
93	9.3.5	Overvoltage protection of GIL/GIB lines	69
94	9.4 Sub	bstation	69
95	9.4.1	General	69
96	9.4.2	Insulation co-ordination for overvoltages	71
97	Annex A (info	rmative) Determination of temporary overvoltages due to earth faults	
00	Anney R (info	rmative) Weibull probability distributions	
90		amanye) webuli probability distributions	

99	B.1	General remarks	77
100	B.2	Disruptive discharge probability of external insulation	78
101	B.3	Cumulative frequency distribution of overvoltages	80
102 103	Annex C (i to line	nformative) Determination of the representative slow-front overvoltage due energization and re-energization	83
104	C.1	General remarks	83
105 106	C.2	Probability distribution of the representative amplitude of the prospective overvoltage phase-to-earth	83
107	C.3	Probability distribution of the representative amplitude of the prospective	
108		overvoltage phase-to-phase	85
109	C.4	Insulation characteristic	86
110	C.5	Numerical example	89
111	Annex D (i	nformative) Transferred overvoltages in transformers	94
112	D.1	General remarks	94
113	D.2	Transferred temporary overvoltages	95
114	D.3	Capacitively transferred surges	95
115	D.4	Inductively transferred surges	97
116	Annex E (i	nformative) Determination of lightning overvoltages by simplified method	101
117	E.1	General remarks	101
118	E.2	Determination of the limit distance (X _n).	101
119	F 2 1	Protection with arresters in the substation	101
120	E.2.1	Self-protection of substation V/IIIV/	102
121	F 3	Estimation of the representative lightning overvoltage amplitude	103
122	E 3 1	General (standards itab si)	103
123	E.3.1	Shielding penetration	103
120	E 3 3	Back flashovers	104
125	F 4	Simplified approach <u>oSIST prEN IEC 60071-2:2022</u>	106
126	E 5	Assumed that international the representative lightning overvoltage	108
127	Annex F (ii	8aee-4c4c-9cbb-8493f4d8cc48/osist-pren-iec-60071-2- nformative) Calculation of air gap breakdown strendth from experimental	100
128	data		109
129	F.1	General	109
130	F.2	Insulation response to power-frequency voltages	109
131	F.3	Insulation response to slow-front overvoltages	110
132	F.4	Insulation response to fast-front overvoltages	111
133	Annex G (i	nformative) Examples of insulation co-ordination procedure	115
134	G.1	Overview	115
135	G.2	Numerical example for a system in range I (with nominal voltage of 230 kV)	115
136	G.2.1	General	115
137	G.2.2	Part 1: no special operating conditions	116
138	G.2.3	Part 2: influence of capacitor switching at station 2	123
139	G.2.4	Part 3: flow charts related to the example of Clause G.2	125
140	G.3	Numerical example for a system in range II (with nominal voltage of 735 kV)	130
141	G.3.1	General	130
142 143	G.3.2	Step 1: determination of the representative overvoltages – values of <i>U</i> _{rp}	130
144 145	G.3.3	Step 2: determination of the co-ordination withstand voltages – values of U_{CW}	131
146 147	G.3.4	Step 3: determination of the required withstand voltages – values of $U_{\rm rw}$	132
148	G.3.5	Step 4: conversion to switching impulse withstand voltages (SIWV)	133

149	G.3.6	Step 5: selection of standard insulation levels	134
150	G.3.7	Considerations relative to phase-to-phase insulation co-ordination	134
151	G.3.8	Phase-to-earth clearances	135
152	G.3.9	Phase-to-phase clearances	136
153	G.4 N	Numerical example for substations in distribution systems with $U_{ m m}$ up to	
154	3	36 kV in range I	136
155	G.4.1	General	136
156	G.4.2	Step 1: determination of the representative overvoltages –	
157		values of U _{rp}	137
158	G.4.3	Step 2: determination of the co-ordination withstand voltages –	
159		values of U _{CW}	137
160	G.4.4	Step 3: determination of required withstand voltages – values of $U_{\rm rw}$	138
161	G.4.5	Step 4: conversion to standard short-duration power-frequency and	
162	_	lightning impulse withstand voltages	139
163	G.4.6	Step 5: selection of standard withstand voltages	140
164	G.4.7	Summary of insulation co-ordination procedure for the example of	140
165	Annov H (in	Clause G.4	140
167	examp	le	142
168	H1 (Seneral principles	142
169	H 1 1	Atmospheric correction in standard tests	142
170	Н 1 2	Task of atmospheric correction in insulation co-ordination	143
171	H2 4	Atmospheric correction in insulation co-ordination	145
172	H 2 1	Factors for atmospheric correction	145
173	H 2 2	General characteristics for moderate climates 31	145
174	H.2.3	Special atmospheric conditions	146
175	H 2 4	Altitude dependency of air pressure 0071-2:2022	147
176	H.3 A	Altitude dotrection ndards.itch.ai/catalog/standards/sist/7.7d46b6a-	
177	H.3.1	Definition of the altitude correction factor-pren-iec-60071-2-	
178	H.3.2	Principle of altitude correction ²⁰²²	149
179	H.3.3	Altitude correction for standard equipment operating at altitudes up to	
180		1 000 m	150
181	H.3.4	Altitude correction for standard equipment operating at altitudes above	
182		1 000 m	151
183	H.4 S	Selection of the exponent <i>m</i>	151
184	H.4.1	General	151
185	H.4.2	Derivation of exponent m for switching impulse voltage	152
186	H.4.3	Derivation of exponent <i>m</i> for critical switching impulse voltage	154
187	Annex I (in	formative) Evaluation method of non-standard lightning overvoltage shape	157
188	loi rep		157
189	1.1 (Seneral remarks	157
190	1.2 L	Lightning overvoltage snape	157
191	1.3 E	Evaluation method for GIS	157
192	1.3.1	Experiments	15/
193	1.3.Z	Evaluation method for transformer	150
194	1.4 E	Evaluation method for transformer	150
195	1.4.1	Evaluation of overvoltage change	150
190	I.4.Z	formative) Insulation co-ordination for very fast front every lagos in UUV	136
197 198	substa	tions	165
199	.11 (Reneral	165
	5.1 (

200	J.2	Influence of disconnector design	. 165
201	J.3	Insulation co-ordination for VFFO	. 166
202	Annex K (informative) Application of shunt reactors to limit TOV and SFO of high	
203	volta	ge overhead transmission line	. 168
204	K.1	General remarks	. 168
205	K.2	Limitation of TOV and SFO	. 168
206	K.3	Application of the neutral grounding reactor to limit resonance overvoltage	400
207		and secondary arc current	.168
208	К.4 К.5	SFO and Beat frequency overvoltage limited by neutral arrester	. 109
209	K.5 K.6	SFO and FFO due to SR de-energization	.170
210	N.0	Limitation of TOV by Controllable SR	. 170
211	К./ Ко	Self excitation TOV of experience generator	. 170
212		Self-excitation TOV of synchronous generator	. 170
213	Annex L (. 17 1
214	L.1		.1/1
215	L.2	Description in CIGRE [38]	.171
216	L.3	Flash program in IEEE [51]	.172
217 218	L.4 [C	ase Study] Calculation of Lightning Stroke Rate and Lightning Outage Rate (Appendix D in CIGRE TB 839 [38])	. 172
219	L.4.1 E	Basic flow of calculation method	. 172
220	L.4.2 (Comparison of Calculation Results with Observations	. 174
221	L.4.2	.1 Calculations on Lightning Strokes to Phase Conductor	. 174
222	L.4.2	.2 Calculations on Lightning Outage Rate	. 175
223	Bibliograp	hy	. 177
224		(standards.iten.al)	
225 226	Figure 1 - energizati	- Range of 2 % slow-front overvoltages at the receiving end due to line on and re-energization [28] [.prEN.IEC.60071-2:2022	27
227 228	Figure 2 - and phase	- Ratio between/ther2 ¹ %dvaluesoofstow-frontrovervottates phaseato-phase e-to-earth f29 3;f301c-9cbb-8493f4d8cc48/osist-pren-icc-60071-2-	28
229	Figure 3 -	- Diagram for surge arrester connection to the protected object	35
230	41	5 5 7 7	
200	Eiguro 4	Modelling of transmission lines and substations/newer stations	11
201			41
232 233	Figure 5 – linear sca	- Distributive discharge probability of self-restoring insulation described on a	50
234 235	Figure 6 - Gaussian	- Disruptive discharge probability of self-restoring insulation described on a scale	50
236	Figure 7 -	- Evaluation of deterministic co-ordination factor Ked	51
227	Eigure 8	Evaluation of the rick of failure	52
237			52
238 239	of the stat	- Risk of failure of external insulation for slow-front overvoltages as a function tistical co-ordination factor $K_{\rm CS}$	54
240 241	Figure 10 withstand	 Dependence of exponent <i>m</i> on the co-ordination switching impulse voltage 	57
242 243	Figure 11 <i>K</i> betweer	 Probability P of an equipment to pass the test dependent on the difference n the actual and the rated impulse withstand voltage 	62
244 245	Figure 12 location	 Example of a schematic substation layout used for the overvoltage stress 	70
246	Figure A.1	I – Earth fault factor k on a base of X_0/X_1 for $R_1/X_1 = R_f = 0$	74
247	Figure A.2	2 – Relationship between R_0/X_1 and X_0/X_1 for constant values of earth fault	- 4
248	Tactor k w	nere $\kappa_1 = 0$	14

249 250	Figure A.3 – Relationship between R_0/X_1 and X_0/X_1 for constant values of earth fault factor k where $R_1 = 0.5 X_1$	75
251 252	Figure A.4 – Relationship between R_0/X_1 and X_0/X_1 for constant values of earth fault factor k where $R_1 = X_1$	75
253 254	Figure A.5 – Relationship between R_0/X_1 and X_0/X_1 for constant values of earth fault factor k where $R_1 = 2X_1$	76
255 256	Figure B.1 – Conversion chart for the reduction of the withstand voltage due to placing insulation configurations in parallel	82
257 258	Figure C.1 – Probability density and cumulative distribution for derivation of the representative overvoltage phase-to-earth	83
259 260	Figure C.2 – Example for bivariate phase-to-phase overvoltage curves with constant probability density and tangents giving the relevant 2 % values	90
261 262	Figure C.3 – Principle of the determination of the representative phase-to-phase overvoltage $U_{\rm pre}$	91
263	Figure C.4 – Schematic phase-phase-earth insulation configuration	92
264 265	Figure C.5 – Description of the 50 % switching impulse flashover voltage of a phase- phase-earth insulation	92
266 267	Figure C.6 – Inclination angle of the phase-to-phase insulation characteristic in range "b" dependent on the ratio of the phase-phase clearance D to the height H_{t} above	00
268	Earth	93
269 270	equivalent circuit describing the windings	99
271 272	Figure D.2 – Values of factor <i>L</i> describing the effect of the winding connections on the inductive surge transference	100
273 274	Figure H.1 – Principle of the atmospheric correction during test of a specified insulation level according to the procedure of IEC 60060-12022	143
275 276	Figure H.2 – Principal task of the atmospheric correction in insulation according to IEC 6007de44c4c-9cbb-8493f4d8cc48/osist-pren-iec-60071-2-	144
277 278	Figure H.3 – Comparison of atmospheric correction $\delta \times k_h$ with relative air pressure p/p_0 for various weather stations around the world	146
279 280	Figure H.4 – Deviation of simplified pressure calculation by exponential function in this document from the temperature dependent pressure calculation of ISO 2533	148
281	Figure H.5 – Principle of altitude correction: decreasing withstand voltage U_{10} of	
282	equipment with increasing altitude	150
283 284	Figure H.6 – Sets of m -curves for standard switching impulse voltage including the variations in altitude for each gap factor	154
285 286	Figure H.7 – Exponent <i>m</i> for standard switching impulse voltage for selected gap factors covering altitudes up to 4 000 m	154
287 288	Figure H.8 – Sets of <i>m</i> -curves for critical switching impulse voltage including the variations in altitude for each gap factor	155
289 290	Figure H.9 – Exponent <i>m</i> for critical switching impulse voltage for selected gap factors covering altitudes up to 4 000 m	155
291 292	Figure H.10 – Accordance of m -curves from Figure 10 with determination of exponent m by means of critical switching impulse voltage for selected gap factors and altitudes	156
293	Figure I.1 – Examples of lightning overvoltage shapes	160
294 295	Figure I.2 – Example of insulation characteristics with respect to lightning overvoltages of the SF ₆ gas gap (Shape E)	161
296	Figure I.3 – Calculation of duration time <i>T</i> d	161
297	Figure I.4 – Shape evaluation flow for GIS and transformer	162

- 8 -

IEC 60071-2/Ed5/CDV @ IEC (E)

298	Figure I.5 – Application to GIS lightning overvoltage	. 163
299 300	Figure I.6 – Example of insulation characteristics with respect to lightning overvoltage of the turn-to-turn insulation (Shape C)	. 163
301	Figure I.7 – Application to transformer lightning overvoltage	. 164
302	Figure J.1 – Insulation co-ordination for very-fast-front overvoltages	. 167
303 304	Figure L.1 – Outline of the CIGRE method for lightning performance of an overhead line 172	
305	Figure L.2 – Flowchart to calculate lightning outage rate of transmission lines	. 174
306	Figure L.3 – Typical conductor arrangements of large-scale transmission lines	. 175
307	Figure L.4 – Lightning stroke rate to power lines -calculations and observations	. 175
308	Figure L.5 – Lightning outage rate -calculations and observations	. 176
309		
310 311	Table 1 – Test conversion factors for range I, to convert required SIWV to SDWV and LIWV	60
312	Table 2 – Test conversion factors for range II to convert required SDWV to SIWV	60
313	Table 3 – Selectivity of test procedures B and C of IEC 60060-1	62
314 315	Table B.1 – Breakdown voltage versus cumulative flashover probability – Single insulation and 100 parallel insulations	79
316	Table E.1 – Corona damping constant Kconstant Kconstant	. 102
317	Table E.2 – Factor A for various overhead lines	. 107
318 319	Table F.1 – Typical gap factors <i>K</i> for switching impulse breakdown phase-to-earth (according to [1] and [4])	. 113
320	Table F.2 – Gap factors for typical phase-to-phase geometries	.114
321 322	Table G.1 – Summary of minimum required withstand voltages obtained for the example shown in G.2.2	. 122
323 324	Table G.2 – Summarypof/required withstand voltagesa obtained for the example shown in G.2.3	. 124
325 326	Table G.3 – Values related to the insulation coordination procedure for the example in G.4 141	
327 328	Table H.1 – Comparison of functional expressions of Figure 10 with the selectedparameters from the derivation of <i>m</i> -curves with critical switching impulse	. 156
329	Table I.1 – Evaluation of the lightning overvoltage in the GIS of UHV system	. 161
330	Table I.2 – Evaluation of lightning overvoltage in the transformer of 500 kV system	. 164

331

332

- 9 -

333	INTERNATIONAL ELECTROTECHNICAL COMMISSION
334	
335	
336	INSULATION CO-ORDINATION –
337	
338	Part 2: Application guidelines
339 340	FOREWORD
341 342 343 344 345 346 347 348 349	1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
350 351 352	2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
353 354 355 356	3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
357 358 359	4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
360 361 362	5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
363	6) All users should ensure that they have the latest edition of this publication.
364 365 366 367	7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
368 369	8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
370 371	 Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.
372 373 374	International Standard IEC 60071-2 has been prepared by IEC technical committee 99: Insulation co-ordination and system engineering of high voltage electrical power installations above 1,0 kV AC and 1,5 kV DC.
375 376	This fifth edition cancels and replaces the fourth edition published in 2018. This edition constitutes a technical revision.
377 378	This edition includes the following significant technical changes with respect to the previous edition:
379	a) Clause 4 Concepts governing the insulation co-ordination is added.
380 381	b) Subclause 5.3 is revised, and Subclause 5.4 Detailed simulation is added because it is widely applied in the recent practices of insulation coordination.
382	c) Special considerations for cable line and GIL/GIB are added in Clause 9.
383 384	d) Annex K (informative) Application of line shunt reactor to limitation of TOV and SFO in high voltage overhead transmission lines is added.
385	e) Annex L (informative) Calculation of lightning stroke rate and lightning outage rate is added.
386	The text of this International Standard is based on the following documents:

FDIS	Report on voting
99/xxx/FDIS	99/xxx/RVD

387

Full information on the voting for the approval of this International Standard can be found in the report on voting indicated in the above table.

- This document has been drafted in accordance with the ISO/IEC Directives, Part 2.
- It has the status of a horizontal standard in accordance with IEC Guide 108.
- The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific document. At this date, the document will be
- 395 reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- 398 amended.

399

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

400

401

(standards.iteh.ai)

oSIST prEN IEC 60071-2:2022 https://standards.iteh.ai/catalog/standards/sist/77d46b6a-8aee-4c4c-9cbb-8493f4d8cc48/osist-pren-iec-60071-2-2022 - 11 -

402	INSULATION CO-ORDINATION –
403	
404	Part 2: Application guidelines
405	
406	
407	

408 **1 Scope**

This part of IEC 60071 constitutes application guidelines and deals with the selection of insulation levels of equipment or installations for three-phase a.c. systems. Its aim is to give guidance for the determination of the rated withstand voltages for ranges I and II of IEC 60071-1 and to justify the association of these rated values with the standardized highest voltages for equipment.

This association is for insulation co-ordination purposes only. The requirements for human safety are not covered by this document.

This document covers three-phase a.c. systems with nominal voltages above 1 kV. The values derived or proposed herein are generally applicable only to such systems. However, the concepts presented are also valid for two-phase or single-phase systems.

- This document covers phase-to-earth, phase-to-phase and longitudinal insulation.
- This document is not intended to deal with routine tests. These are to be specified by the relevant product committees.

The content of this document strictly follows the flow chart of the insulation co-ordination process presented in Figure 1 of IEC 60071-1:2019. Clauses 5 to 8 correspond to the squares in this flow chart and give detailed information on the concepts governing the insulation coordination process which leads to the establishment of the required withstand levels.

This document emphasizes the necessity of considering, at the very beginning, all origins, all classes and all types of voltage stresses in service irrespective of the range of highest voltage for equipment. Only at the end of the process, when the selection of the standard withstand voltages takes place, does the principle of covering a particular service voltage stress by a standard withstand voltage apply. Also, at this final step, this document refers to the correlation made in IEC 60071-1 between the standard insulation levels and the highest voltage for equipment.

The annexes contain examples and detailed information which explain or support the concepts described in the main text, and the basic analytical techniques used.

435 **2 Normative references**

The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies.
For undated references, the latest edition of the referenced document (including any
amendments) applies.

- 440 IEC 60060-1:2010, High-voltage test techniques Part 1: General definitions and test 441 requirements
- IEC 60071-1:2019, Insulation co-ordination Part 1: Definitions, principles and rules
 443
- 444 IEC 60505:2011, *Evaluation and qualification of electrical insulation systems*

- 12 -

- IEC TS 60815-1: 2008, Selection and dimensioning of high-voltage insulators intended for use
 in polluted conditions Part 1: Definitions, information and general principles
- IEC TR 60071-4:2004, Insulation co-ordination Part 4: Computational guide to insulation co ordination and modelling of electrical networks
- IEC 60099-5:2018, Surge arresters Part 5: Selection and application recommendations
- 450 ISO 2533:1975, *Standard Atmosphere*
- **3** Terms, definitions, abbreviated terms and symbols
- 452 **3.1 Terms and definitions**
- 453 No terms and definitions are listed in this document.
- ISO and IEC maintain terminological databases for use in standardization at the followingaddresses:
- 456 IEC Electropedia: available at http://www.electropedia.org/
- ISO Online browsing platform: available at http://www.iso.org/obp

458 3.2 Abbreviated terms **j leh S LANDARD**

- TOV temporary overvoltages SFO slow-front overvoltage **PREVIEW**
- FFO fast-front overvoltage and ards.iteh.ai)
- VFFO very-fast-front overvoltage
- SDWV short-duration power-frequency withstand voltage
- SIWV switching impulse withstand voltage SIWV switching impulse withstand voltage
- LIWV lightning impulse with stand yoltage c48/osist-pren-iec-60071-2-
- MOSA metal-oxide surge arrester 2022
- LSA line surge arrester
- EGLA externally gapped line arrester
- NGLA non-gapped line arrester
- LIPL lightning impulse protection level
- SIPL switching impulse protection level
- SVU series varistor unit
- AIS air-insulated substation
- GIS gas-insulated switchgear, gas-insulated substation
- EHV extra high voltage: the highest voltage for equipment above 245 kV and up to and including 800 kV
- UHV ultra high voltage: the highest voltage for equipment above 800 kV
- ESDD equivalent salt deposit density
- TCV trapped charge voltage
- MTBF mean time between failure
- EMT electro-magnetic transients
- 459 **3.3 Symbols**

For the purpose of this document, the following symbols and definitions apply. The symbol is followed by the unit to be normally considered, dimensionless quantities being indicated by (-). 462

463

K_{cd}

(-)

Some quantities are expressed in p.u. A per unit quantity is the ratio of the actual value of an

electrical parameter (voltage, current, frequency, power, impedance, etc.) to a given reference

value of the same parameter. 464 parameter characterizing the influence of the lightning severity for the Α (kV) equipment depending on the type of overhead line connected to it a₁ (m) length of the lead connecting the surge arrester to the line (m) length of the lead connecting the surge arrester to earth **a**₂ length of the phase conductor between the surge arrester and the (m) a_3 protected equipment length of the active part of the surge arrester (m) a₄ В factor used when describing the phase-to-phase (-) discharge characteristic Ce (nF) capacitance to earth of transformer primary windings C, (nF) series capacitance of transformer primary windings phase-to-earth capacitance of the transformer secondary winding C_2 (nF) C_{12} (nF) capacitance between primary and secondary windings of transformers C_{1in} (nF) equivalent input capacitance of the terminal 1 of three-phase transformers C_{2in} (nF) equivalent input capacitance of the terminal 2 of three-phase transformers K V V equivalent input capacitance of the terminal 3 of three-phase C_{3in} (nF) transformers clarcis.iten.alj velocity of light С $(m/\mu s)$ coupling factor of voltages between earth wire and phase conductor Cf (p.u.) https://states/catalog/standards/sist/77d46b6ad 8aee-air/gap/lehgth93f4d8cc48/osist-pren-jec-60071-2-(m) dividing ratio of capacitively transferred surges dr (-) (kV/m)soil ionization gradient E_0 F function describing the cumulative distribution of overvoltage amplitudes, where F(U) = 1 - P(U); see Clause B.3 function describing the probability density of overvoltage amplitudes f Н (m) altitude above sea-level h (-) power-frequency voltage factor for transferred surges in transformers H_t height above ground (m) Ι (kA) lightning current amplitude limit lightning current in tower footing resistance calculation (kA) l_g (kA) nominal discharge current of an arrester l_n J (-) winding factor for inductively transferred surges in transformers Κ gap factor taking into account the influence of the gap configuration (-) on the strength Ka (-) altitude correction factor K_c co-ordination factor (-) Ks safety factor (-)

deterministic co-ordination factor