FINAL DRAFT

INTERNATIONAL STANDARD

ISO/FDIS 10094-1

ISO/TC **131**/SC **5**

Secretariat: AFNOR

Voting begins on: **2021-08-10**

Voting terminates on: 2021-10-05

Pneumatic fluid power — Electropneumatic pressure control valves —

Part 1:

Main characteristics to include in the supplier's literature

iTeh ST Transmissions pneumatiques – Appareils électropneumatiques de distribution à commande continue de pression – (stancarcs, ten a) Partie 1: Principales caractéristiques à inclure dans la documentation des fournisseurs ISO/FDIS 10094-1

https://standards.iteh.ai/catalog/standards/sist/fbbfef85-28c8-4902-b426-4f588ea8a4df/iso-fdis-10094-1

RECIPIENTS OF THIS DRAFT ARE INVITED TO SUBMIT, WITH THEIR COMMENTS, NOTIFICATION OF ANY RELEVANT PATENT RIGHTS OF WHICH THEY ARE AWARE AND TO PROVIDE SUPPORTING DOCUMENTATION.

IN ADDITION TO THEIR EVALUATION AS BEING ACCEPTABLE FOR INDUSTRIAL, TECHNO-LOGICAL, COMMERCIAL AND USER PURPOSES, DRAFT INTERNATIONAL STANDARDS MAY ON OCCASION HAVE TO BE CONSIDERED IN THE LIGHT OF THEIR POTENTIAL TO BECOME STAN-DARDS TO WHICH REFERENCE MAY BE MADE IN NATIONAL REGULATIONS.

Reference number ISO/FDIS 10094-1:2021(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/FDIS 10094-1 https://standards.iteh.ai/catalog/standards/sist/fbbfef85-28c8-4902-b426-4f588ea8a4df/iso-fdis-10094-1

COPYRIGHT PROTECTED DOCUMENT

© ISO 2021

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Contents

Fore	word			iv	
Intro	ductio	n		v	
1	Scope Normative references Terms and definitions				
2					
3					
4	Symb	ols		2	
5	5.1 5.2 5.3	Genera Electric Static c 5.3.1 5.3.2 5.3.3 5.3.4 Dynam 5.4.1 5.4.2 5.4.3 5.4.3 5.4.4	cs c characteristics haracteristics Control signal/pressure characteristics at null forward flow rate or relief flow rate Flow/pressure characteristics Pressure regulation characteristics Maximum leakage flow rate at null forward flow rate or relief flow rate ic characteristics General Charge characteristics Discharge characteristics Frequency responses (optional)	3 3 3 3 3 3 3 3 3 3 3 6 7 8 8 8 8 8 8 8 8 8 10 11	
6	Ident	tification	statement (reference to this document)		
Bibli	ograph		ISO/FDIS 10094-1 tns://standards.iteb.ai/catalog/standards/sist/fbbfet85-28c8-4902-b426-		

4f588ea8a4df/iso-fdis-10094-1

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 131, *Fluid power systems*, Subcommittee SC 5, *Control products and components*. ISO/FDIS 10094-1 https://standards.iteh.ai/catalog/standards/sist/fbbfef85-28c8-4902-b426-

This second edition cancels and replaces the first edition (ISO 10094-1:2010) which has been technically revised.

The main changes compared to the previous edition are as follows:

- Updates to the Scope: "proportional pressure control valves" changed to "proportional pressure control valves without electronic pressure feedback" and "pressure servo-valves (closed loop)" changed to "proportional pressure control valves with electronic pressure feedback";
- Revision of <u>Figure 1</u>;
- Addition of two static characteristics, Sensitivity (<u>5.3.1.7</u>) and Offset (<u>5.3.1.8</u>);
- The frequency responses (5.4.4) are now optional.

A list of all parts in the ISO 10094 series can be found on the ISO website.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at <u>www.iso.org/members.html</u>.

Introduction

In pneumatic fluid power systems, power is transmitted and controlled through a gas under pressure within a circuit.

When pressure tracking or pressure regulation is required, electro-pneumatic continuous pressure control valves can be used to track a variable set point with low tracking error or to maintain the pressure of the gas at an approximately constant level.

These control valves continuously modulate the pneumatic pressure of a system in response to a continuous electrical input signal and link the electrical input value to a proportional pressure value.

It is therefore necessary to know some performance characteristics of these electro-pneumatic continuous pressure control valves in order to determine their suitability.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/FDIS 10094-1 https://standards.iteh.ai/catalog/standards/sist/fbbfef85-28c8-4902-b426-4f588ea8a4df/iso-fdis-10094-1

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/FDIS 10094-1 https://standards.iteh.ai/catalog/standards/sist/fbbfef85-28c8-4902-b426-4f588ea8a4df/iso-fdis-10094-1

Pneumatic fluid power — Electro-pneumatic pressure control valves —

Part 1: Main characteristics to include in the supplier's literature

1 Scope

This document specifies which characteristics of electro-pneumatic continuous pressure control valves are to be included in the supplier's literature.

In accordance with ISO 5598, these control valves include:

- electrically modulated pneumatic proportional pressure valves,
- proportional pressure control valves without electronic pressure feedback, and
- proportional pressure control valves with electronic pressure feedback.

This document is limited to the characterization of components with an exhaust port to the atmosphere.

NOTE 1 The characteristics of non-electrically modulated pneumatic pressure control valves are specified in ISO 6953-1.

NOTE 2 The characteristics of electro-pneumaticscontinuous flow control valves are specified in ISO 10041-1. https://standards.iteh.ai/catalog/standards/sist/fbbfef85-28c8-4902-b426-

4f588ea8a4df/iso-fdis-10094-1

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 5598, Fluid power systems and components — Vocabulary

ISO 6953-1, Pneumatic fluid power — Compressed air pressure regulators and filter-regulators — Part 1: Main characteristics to be included in literature from suppliers and product-marking requirements

ISO 10094-2:2021, Pneumatic fluid power — Electro-pneumatic pressure control valves — Part 2: Test methods to determine main characteristics to include in the supplier's literature

3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 5598, ISO 6853-1, ISO 10094-2 and the following apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at https://www.iso.org/obp
- IEC Electropedia: available at <u>https://www.electropedia.org/</u>

3.1

characteristic line

straight line drawn to represent the actual performance of a proportional pressure regulator passing by the mean regulated pressure readings of 5 % and 95 % of the full-scale

3.2

electro-pneumatic continuous pressure control valve

control valve which continuously modulates the pneumatic power of a system in response to a continuous electrical input signal and which links the electrical input quantity to a pressure value

3.3

inlet pressure

pressure at the inlet port of a component, piping or system

[SOURCE: ISO 5598:2020, 3.2.397]

3.4

electrical control signal

set signal

electrical signal applied to a control device

3.5

control signal/pressure characteristic curve

graphical representation of the relationship between the regulated pressure and the electrical control signal on its full scale while the forward flow rate or the relief flow rate is null, at constant inlet pressure iTeh STANDARD PREVIEW

3.6

minimum regulated pressure

minimum regulated pressure pressure at the first point of the control signal/pressure characteristic curve

3.7

ISO/FDIS 10094-1

flow/pressure characteristic/cunveds.iteh.ai/catalog/standards/sist/fbbfef85-28c8-4902-b426-

graphical representation of the relationship between the regulated pressure and the forward flow rate or the relief flow rate while the control signal and the inlet pressure are maintained constant

3.8

pressure regulation characteristic

variation of the regulated pressure for a given control signal, under the effect of an inlet pressure variation, measured for a defined flow

3.9

maximum deviation

deviation from the characteristic line to the total of the maximum p_2 excursions above and below the characteristic line

Symbols 4

For the purposes of this document, the symbols and units listed in Table 1 apply.

Description	Symbol	Units		
Maximum sonic conductance at the inlet	C _{f,max}	$m^{3}(s \cdot Pa) (ANR)$		
Sonic conductance at the exhaust	C _r	m ³ (s·Pa) (ANR) ^b		
^a As described in ISO 11727.				
^b The reference atmosphere is defined in ISO 8778, i.e.: $T_0 = 293,15$ K, $p_0 = 100$ kP (1 bar) and a relative humidity of 65 %.				

Table 1 — Symbols and units

Description	Symbol	Units		
Hysteresis	Н	% FS		
Linearity	L	% FS		
Sensitivity	m	Pa/V, Pa/mA or Pa/numerical signal		
Offset	0	%		
Total relative pressure at the inlet port ^a	<i>p</i> ₁	Ра		
Total relative pressure at the outlet port ^a	<i>p</i> ₂	Ра		
Repeatability	r	% FS		
Resolution	S	% FS		
Maximal difference of the linearity	$\Delta p_{2,L,max}$	Ра		
^a As described in ISO 11727.				
^b The reference atmosphere is defined in ISO 8778, i.e.: T_0 = 293,15 K, p_0 = 100 kPa (1 bar) and a relative humidity of 65 %.				

Table 1 (contin	ued)
-----------------	------

5 Characteristics

5.1 General **iTeh STANDARD PREVIEW**

Descriptive literature covering electro-pheumatic continuous pressure control valves shall include the characteristics given in <u>5.2</u> to <u>5.4</u>.

The data provided by the supplier shall assist the user in selecting the best-suited electro-pneumatic continuous pressure control valve for the particular application.

5.2 Electric characteristics

The required minimum voltage, the required minimum current and the required minimum power of the power supply shall be given.

5.3 Static characteristics

5.3.1 Control signal/pressure characteristics at null forward flow rate or relief flow rate

5.3.1.1 Characteristic curve

The regulated pressure, p_2 , at null forward or relief flow rate shall be indicated on a graph as shown in Figure 1.

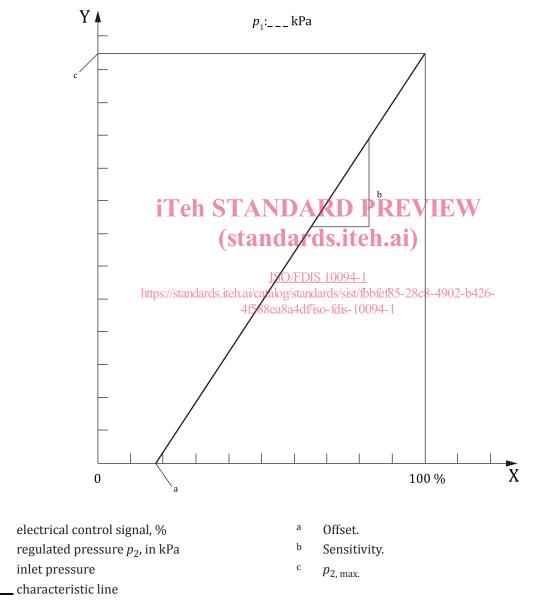
This characteristic straight line shall be plotted in accordance with ISO 10094-2, for a given inlet pressure, p_1 , indicated as a relative value as shown in Figure 1.

The test shall be performed in accordance with ISO 10094-2:2021, 7.2.1.

The offset value and the sensitivity of the characteristic straight line shall be indicated on the graph as shown in Figure 1.

5.3.1.2 Linearity

The linearity, *L*, expressed as a percentage of the regulated pressure full-scale, shall be calculated in accordance with ISO 10094-2:2021, Formula (1).


The obtained value gives the maximum difference between the regulated pressure mean values and the characteristic straight line shown in <u>Figure 1</u>.

5.3.1.3 Control signal/pressure hysteresis

The hysteresis, *H*, expressed as a percentage of the regulated pressure full-scale, shall be calculated in accordance with ISO 10094-2:2021, Formula (2).

The obtained value gives the maximum difference between the regulated pressure values measured with both an increasing and decreasing control signal.

The hysteresis can also be expressed as an absolute value.

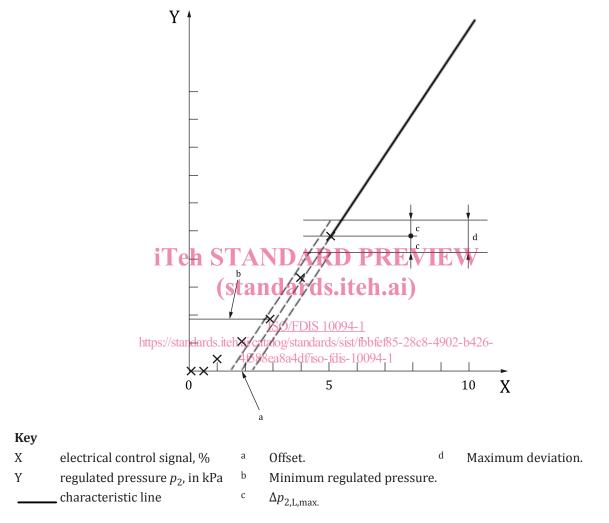
 $\label{eq:Figure 1-Control signal/pressure characteristic curve at null forward flow rate or relief flow rate$

5.3.1.4 Minimum regulated pressure

The test shall be performed in accordance with ISO 10094-2:2021, 7.2.2.

Key

Х


Y

 p_1

The minimum regulated pressure corresponds to the pressure at the first point which is within the allowable limits of linearity of the control signal/pressure characteristic curve determined in 5.3.1.2, as shown in Figure 2.

The minimum regulated pressure, expressed as a percentage of the regulated pressure full-scale, shall be determined in accordance with ISO 10094-2:2021, 7.3.4.

The measured points corresponding to the test of ISO 10094-2:2021, 7.2.2, the minimum regulated pressure, as well as the offset, shall be indicated on a graph as shown in Figure 2.

Figure 2 — Definition of the minimum regulated pressure and of the offset on the control signal/pressure characteristic curve at null flow rate

5.3.1.5 Resolution

The resolution, *S*, corresponds to the minimal difference between two control signal values for which there is a difference in the corresponding regulated pressure values.

The test shall be performed in accordance with ISO 10094-2:2021, 7.2.3.

The resolution, *S*, expressed in percentage of the control signal full-scale, shall be determined in accordance with ISO 10094-2:2021, 7.3.5.