

SLOVENSKI STANDARD oSIST prEN 302-3:2022

01-marec-2022

Lepila za nosilne lesene konstrukcije - Preskusne metode - 3. del: Ugotavljanje vpliva kislinskih poškodb lesnih vlaken, nastalih zaradi cikličnih obremenitev s temperaturo in vlago, na prečno natezno trdnost

Adhesives for load-bearing timber structures - Test methods - Part 3: Determination of the effect of acid damage to wood fibres by temperature and humidity cycling on the transverse tensile strength

iTeh STANDARD

Klebstoffe für tragende Holzbauteile Prüfverfahren Teil 3: Bestimmung des Einflusses von Säureschädigung der Holzfasern durch Temperatur- und Feuchtezyklen auf die Querzugfestigkeit (standards.iteh.ai)

Adhésifs pour structures portantes en bois - Méthodes d'essai - Partie 3 : Détermination de l'influence de l'attaque acide des fibres de bois, résultant de cycles de températures et d'humidité sur la résistance à la traction transversale 3944-4be2-a107-8389c52250d2/osist-pren-302-3-2022

Ta slovenski standard je istoveten z: prEN 302-3

ICS:

83.180 Lepila Adhesives

91.080.20 Lesene konstrukcije Timber structures

oSIST prEN 302-3:2022 en,fr,de

oSIST prEN 302-3:2022

iTeh STANDARD PREVIEW (standards.iteh.ai)

oSIST prEN 302-3:2022

https://standards.iteh.ai/catalog/standards/sist/bc9b2262-3944-4be2-a107-8389c52250d2/osist-pren-302-3-2022

EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM

DRAFT prEN 302-3

December 2021

ICS 83.180

English Version

Adhesives for load-bearing timber structures - Test methods - Part 3: Determination of the effect of acid damage to wood fibres by temperature and humidity cycling on the transverse tensile strength

Adhésifs pour structures portantes en bois - Méthodes d'essai - Partie 3 : Détermination de l'influence de l'attaque acide des fibres de bois, résultant de cycles de températures et d'humidité sur la résistance à la traction transversale

Klebstoffe für tragende Holzbauteile - Prüfverfahren -Teil 3: Bestimmung des Einflusses von Säureschädigung der Holzfasern durch Temperaturund Feuchtezyklen auf die Querzugfestigkeit

iTeh STANDARD

This draft European Standard is submitted to CEN members for enquiry. It has been drawn up by the Technical Committee CEN/TC 193.

If this draft becomes a European Standard, CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.

This draft European Standard was established by CEN in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions 2-3:2022

https://standards.iteh.ai/catalog/standards/sist/bc9b2262-CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.

Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.

Warning: This document is not a European Standard. It is distributed for review and comments. It is subject to change without notice and shall not be referred to as a European Standard.

EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

Contents European forewordIntroduction					
			1	Scope	<i>6</i>
			2	Normative references	6
3	Terms and definitions				
4	Symbols				
5	Principle	7			
6	Apparatus	7			
7	Method	7			
7.1	Selection of timber	7			
7.2	Preparation of the bonded assemblies	8			
7.3	Preparation of the test pieces	9			
7.4	Number of test pieces	10			
7.5	Number of test pieces	10			
7.6	Test procedure	10			
8	Expression of results PREVIEW	11			
9	Test report (Standards.iteli.ai)	11			
Bibli	iography(Stanuar us.item.ar)	13			

oSIST prEN 302-3:2022

https://standards.iteh.ai/catalog/standards/sist/bc9b2262-3944-4be2-a107-8389c52250d2/osist-pren-302-3-2022

European foreword

This document (prEN 302-3:2021) has been prepared by Technical Committee CEN/TC 193 "Adhesives", the secretariat of which is held by UNE.

This document is currently submitted to the CEN Enquiry.

This document will supersede EN 302-3:2017.

Compared to EN 302-3:2017 the following modifications have been made:

- a) two new standards, EN 17334 and EN 17418, have been included in the list of standards in Introduction;
- b) two new Clauses (Terms and definitions and Symbols) are introduced.

iTeh STANDARD PREVIEW (standards.iteh.ai)

oSIST prEN 302-3:2022 https://standards.iteh.ai/catalog/standards/sist/bc9b2262-3944-4be2-a107-8389c52250d2/osist-pren-302-3-2022

Introduction

This document is one of a series dealing with adhesives for use with timber structures, and is published in support of EN 1995, Eurocode 5: Design of timber structures. The series consists of five classification and performance requirements for adhesives for load-bearing timber structures, phenolic and aminoplastic adhesives (EN 301), one component polyurethane adhesives (EN 15425), emulsion polymerized isocyanate adhesives (EN 16254), two component epoxy and polyurethane adhesives for glued in rods (EN 17334) and for on-site repair of cracked timber structures (EN 17418), and all together twelve test methods (EN 302-1, EN 302-2, EN 302-3, EN 302-4, EN 302-5, EN 302-6, EN 302-7 and EN 302-8, and EN 15416-1, EN 15416-3, EN 15416-4 and EN 15416-5).

These European standards have the following titles.

EN 301, Adhesives, phenolic and aminoplastic, for load-bearing timber structures — Classification and performance requirements

EN 302, *Adhesives for load-bearing timber structures* — *Test methods:*

- Part 1: Determination of longitudinal tensile shear strength
- Part 2: Determination of resistance to delamination
- Part 4: Determination of the effects of wood shrinkage on the shear strength
- Part 5: Determination of maximum assembly time under referenced conditions
- Part 6: Determination of the minimum pressing time under referenced conditions
- Part 7: Determination of the working life under referenced conditions https://standards.iteh.ai/catalog/standards/sist/bc9b2262-
- Part 8: Static load test of multiple bond line specimens in compression shear 2022

EN 15416, Adhesives for load bearing timber structures other than phenolic and aminoplastic — Test methods:

- Part 1: Long-term tension load test perpendicular to the bond line at varying climate conditions with specimens loaded perpendicular to the glue line (Glasshouse test)
- Part 3: Creep deformation test at cyclic climate conditions with specimens loaded in bending shear
- Part 4: Determination of open assembly time under referenced conditions
- Part 5: Determination of minimum pressing time under referenced conditions

EN 15425, Adhesives — One component polyurethane (PUR) for load bearing timber structures — Classification and performance requirements

EN 16254, Adhesives — Emulsion polymerized isocyanate (EPI) for load-bearing timber structures — Classification and performance requirements

EN 17334, Glued-in rods in glued structural timber products — Testing, requirements and bond shear strength. Classification

EN 17418, Two-component epoxy and polyurethane adhesives for on-site repair of cracked timber structures — Testing, requirements, and repair strength verification

Safety statement

Persons using this document should be familiar with the normal laboratory practice, if applicable. This document cannot address all of the safety problems, if any, associated with its use. It is the responsibility of the user to establish appropriate safety and health practices and to ensure compliance with any regulatory conditions.

Environmental statement

It is understood that some of the material permitted in this standard can have a negative environmental impact. As technological advantages lead to better alternatives for these materials, they will be eliminated from this document to the greatest extent possible.

At the end of the test, it is recommended that the user of the standard take care to carry out an appropriate disposal of the wastes, according to local regulations.

iTeh STANDARD PREVIEW (standards.iteh.ai)

oSIST prEN 302-3:2022 https://standards.iteh.ai/catalog/standards/sist/bc9b2262-3944-4be2-a107-8389c52250d2/osist-pren-302-3-2022

1 Scope

This document specifies a method for determining the effect on bond strength of damage to wood fibres caused by the action of acids from the adhesive or primer used in the gluing process during climatic cycling.

It is suitable for the following applications:

- a) for assessing the compliance of adhesives with EN 301, EN 15425 and EN 16254;
- b) for assessing the suitability and quality of adhesives for load-bearing timber structures;
- c) for determining if the adhesive after bonding has a damaging influence on the strength of the wood due to chemical action.

This test is intended primarily to obtain performance data for the classification of adhesives for load-bearing timber structures according to their suitability for use in defined climatic environments. This test is carried out on Norway spruce (*Picea abies* L.) or Beech (*Fagus sylvatica* L.).

This method is not intended for use to provide numerical design data and does not necessarily represent the performance of the bonded member in service.

2 Normative references

iTeh STANDARD

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

EN 923, Adhesives — Terms and definitions nd ards.iteh.ai)

EN 1245, Adhesives — Determination of pH

oSIST prEN 302-3:2022

ISO 5893, Rubber and plastics test/equipment teh Tensile flexural and compression types (constant rate of traverse) — Specification 3944-4be2-a107-8389c52250d2/osist-pren-302-3-2022

3 Terms and definitions

For the purposes of this document, the terms and definitions given in EN 923 and the following apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at https://www.iso.org/obp
- IEC Electropedia: available at https://www.electropedia.org/

3.1

glue line

adhesive layer between the wood members

4 Symbols

For the purposes of this document, the following symbols apply.

 $f_{t,90,max}$ transverse tensile strength, in Newtons per square millimetre (N/mm²); F_{max} the applied load at failure, in Newtons (N);

A bonded test surface, in square millimetres (mm²).

5 Principle

A joint between wooden adherents is submitted to defined temperature and humidity cycles and then strained to failure by a transverse tensile load.

6 Apparatus

6.1 Testing machine, which shall be either:

- a) a constant rate of loading machine, capable of maintaining a rate of loading of (5 ± 1) kN/min; or
- b) a constant rate of traverse machine as described in ISO 5893.

Special mounts are required (see Figure 1). One or both mounts shall be attached to the straining heads by a coupling, which permits self-alignment of the mounts whilst the test pieces are being pulled.

- **6.2 Climatic cabinets**, which are enclosures with air circulation capable of maintaining the test pieces under the following conditions:
- a) (10 ± 2) °C at approximately (87.5 ± 2.5) % relative humidity;
- b) (50 ± 2) °C at approximately $(87,5 \pm 2,5)$ % relative humidity;
- c) (50 ± 2) °C with relative humidity lower than 20%.2022

NOTE https://standards.iteh.ai/catalog/standards/sist/bc9b2262-NOTE The velocity of the air circulation at a level of 0,5 m/s to 1,0 m/s has shown to be suitable.

- **6.3 Airtight glass enclosure,** such as a desiccator with a lid is required, with the following dimensions:
- a) volume 2 l to 10 l;
- b) ratio of height to width between 1/1 and 2/1.

7 Method

7.1 Selection of timber

Carry out this test using Norway spruce (*Picea abies* L.) having a density of (450 ± 25) kg/m³ measured at 12 % moisture content.

Carry out the test using beech ($Fagus \, sylvatica \, L$.) having a density of (700 ± 50) kg/m³ measured at 12 % moisture content, for gap filling adhesives (GF).

Prepare one piece of wood, at least $60 \text{ mm} \times 60 \text{ mm}$ in cross section and at least 1 600 mm in length or two pieces with a length of 800 mm that are free from knots, straight-grained and with growth rings not wider than 2 mm and at 30° to 60° to the surfaces of the specimen.

7.2 Preparation of the bonded assemblies

Cut the piece of wood lengthwise into two equal pieces of rectangular cross section and store them in standard climate [20/65] $[(20 \pm 2)$ °C and (65 ± 5) % relative humidity] at least for 7 days to achieve constant mass or moisture content of (12 ± 1) %. Constant mass is defined as the mass attained when the results of two successive weighings over an interval of 24 h differ by not more than 0,1 % of the mass of the specimen.

Not more than 8 h before bonding, plane each surface to be bonded to the final thickness of 25 mm. Remove any dust carefully. Do not touch or soil the prepared surface.

For glue mixes, adhesive and hardener blended before application, the glue line thickness shall be 0,5 mm by using 0,5 mm thick spacers.

For gap filling adhesives (GF), the glue line thickness shall be 2,0 mm by using 2,0 mm thick spacers.

For separate application of adhesive and hardener, the glue line thickness shall be 0,1 mm by using 0,1 mm thick spacers.

Dimensions in millimetres

iTeh STANDARD

PREVIEW

IST pren 302-3:207

https://darda.ideal.org/standards/standard

Kev

a 50 mm + glue line thickness

Figure 1 — Test piece and mounts for assessing the transverse tensile strength of bonded wooden assemblies