

SLOVENSKI STANDARD SIST-TP CEN/TR 17603-32-25:2022

01-september-2022

Vesoljska tehnika - Priročnik za načrtovanje in preverjanje mehanskih udarcev

Space engineering - Mechanical shock design and verification handbook

Raumfahrttechnik - Handbuch zu mechanischem Design und Verifikation für Stöße

Ingénierie spatiale - Chocs mécaniques: Manuel de conception et de vérification

Ta slovenski standard je istoveten z: TD CEN/TR 17603-32-25:2022

https://standards.iteh.ai/catalog/standards/sist/05931b1e-4435-4af7-add6-

ICS:

49.140 Vesoljski sistemi in operacije Space systems and operations

SIST-TP CEN/TR 17603-32-25:2022 en,fr,de

SIST-TP CEN/TR 17603-32-25:2022

iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST-TP CEN/TR 17603-32-25:2022 https://standards.iteh.ai/catalog/standards/sist/05931b1e-4435-4af7-add6ba28eaf62393/sist-tp-cen-tr-17603-32-25-2022

TECHNICAL REPORT RAPPORT TECHNIQUE

CEN/TR 17603-32-25

TECHNISCHER BERICHT

June 2022

ICS 49.035; 49.140

English version

Space engineering - Mechanical shock design and verification handbook

Ingénierie spatiale - Chocs mécaniques: Manuel de conception et de vérification

Raumfahrttechnik - Handbuch zu mechanischem Design und Verifikation für Stöße

This Technical Report was approved by CEN on 13 April 2022. It has been drawn up by the Technical Committee CEN/CLC/JTC 5.

CEN and CENELEC members are the national standards bodies and national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

© 2022 CEN/CENELEC All rights of exploitation in any form and by any means reserved worldwide for CEN national Members and for **CENELEC** Members.

Table of contents

Ε	European Foreword9				
In	Introduction10				
1	Scop	pe1			
2	Refe	rences			
	2.1	References of Part 1	12		
	2.2	References of Part 2	12		
	2.3	References of Part 3	14		
	2.4	References of Part 4	16		
3	Tern	ns, definitions and abbreviated terms	19		
	3.1	Terms and definitions from other documents	19		
	3.2	Terms and definitions specific to the present document	19		
	3.3	Abbreviated terms	20		
4	Bacl	ground – Shock environment description	624		
	4.1	Shock definition and main characteristics	24		
		4.1.1 Shock definition	24		
		4.1.2 Physical aspects of shocks	25		
		4.1.3 Main shock effects	25		
		4.1.4 Shock response spectra (SRS)	26		
5	Sho	ck events	31		
	5.1	Shock occurrence			
5.2 Shock environmental categories		Shock environmental categories	31		
6	Intro	duction to shock design and verification process	34		
	6.1	Presentation of the global process			
	6.2	Means to conduct an evaluation of shock environment and criticality	36		
7	Sho	cks in spacecraft	38		
	7.1	Overview			
	7.2	Potential shock sources for spacecraft	38		
	7.3	Shocks devices description	39		

	7.4	Detailed	d information on specific shock events	42
		7.4.1	Overview	42
		7.4.2	Launcher induced shocks	42
		7.4.3	Clampband release	49
		7.4.4	Other S/C separation systems	56
		7.4.5	Internal shock sources	64
		7.4.6	Landing and splashdown	69
	7.5	Conclus	sion	72
8	Shoo	ck input	s derivation by similarity-heritage-extrapolation	73
8.1 Overview				73
	8.2	Similarity-heritage-extrapolation methods principle		
	0.2	8 2 1		74
		822	Lise of database	74
		823		74
		824	SRS ratio as approximation of transfer functions	70
		825	Difference between structural model and flight model	
		826	Statistical methods to derive maximum expected environment	83
	83	Similari	tv-beritage-extrapolation methods in practice	92
	010	8.3.1	Method A – Point source excitation	93
		8.3.2	Method B – Clampband excitation	
		8.3.3 s:/	Method C – Launcher induced shock (05931ble 4435 497 add6	105
		8.3.4	Method D – Unified approach and practical implementation of	
			attenuation rules for typical spacecraft shock generated environments	114
		8.3.5	Additional attenuation factors	121
		8.3.6	Method E – Shock responses in instruments	122
9	Shoo	ck input	s derivation by numerical analysis	126
	9.1	Numerio	cal simulation principles	126
		9.1.1	Rationale and limitations	126
	9.2	Finite E	lement Analysis (FEA) Numerical methods	127
		9.2.1	Comparison of explicit and implicit methods	127
		9.2.2	Explicit and implicit integration schemes	129
		9.2.3	Example of simulation codes (implicit and explicit)	129
		9.2.4	Modelling aspects	131
	9.3	Statistic	cal Energy Analysis (SEA) Numerical Methods	152
		9.3.1	The classical SEA approach	152
		9.3.2	The Transient SEA formulation	153
		9.3.3	Prediction of shock response by Local Modal Phase Reconstruction	
			(LMPR)	153

		9.3.4	Virtual SEA modelling for robust SEA modelling in the mid-frequency	155
	9.4	Best pra	actices for shock derivation by simulation	157
	9.5 Examples of methodology for numerical simulation			158
		9.5.1	Numerical simulation for clampband release	158
		9.5.2	Numerical simulation for Shogun	161
		9.5.3	Numerical simulation for launcher induced shock	165
		9.5.4	Implicit vs. explicit method: Example of a shock prediction on a complex structure	174
		9.5.5	Shock prediction analysis examples using SEA-Shock module of SEA+ software	176
1() Der	iving a	specification from a shock environment	180
	10.1	Specific	ation tool	180
	10.2	Deriving	the gualification environment – MEE and gualification margin	183
	10.3	From le	vel derivation/Measure to specification	183
	1 64 -			40E
				105
	11.1		History of about attenuation	105
		11.1.1	Impedance broakdown	196
		11.1.2	Shock and vibration Isolator	187
		11.1.5	Damper	180
		11.1.4	Shock absorber	100
	11 2	Theoret	ical background 2393/sist-to-cen-tr-17603-32-25-2022	101
	11.2	11 2 1	Shock attenuation problematic approach	191
		11 2 2	Shock isolator device features	193
		11 2 3	Rubber and damping effect	193
		11.2.4	Flastomer type selection	199
	11.3	Attenua	tor device development	202
		11.3.1	Overview	202
		11.3.2	Attenuator requirement definition	202
		11.3.3	Attenuator device development logic	205
	11.4	Attenua	tor device manufacturing	210
		11.4.1	Overview	210
		11.4.2	Manufacturing process	210
		11.4.3	Moulding technology	211
		11.4.4	Manufacturing limitations	213
	11.5	Product	assurance logic	213
	11.6 Existing attenuator products			214
		11.6.1	Overview	214

	11.6.2	Compact shock attenuators for electronic equipment	214
	11.6.3	SASSA (shock attenuator system for spacecraft and adaptor)	216
	11.6.4	Shock isolators for EXPERT on-board equipment	221
12 Ger	neral ap	proach to shock verification	226
12.1	Rationa	le for shock verification	226
12.2	Test rat	ionale and model philosophy	229
	12.2.1	Qualification test	229
	12.2.2	Acceptance test	231
	12.2.3	System / subsystem distinction	231
	12.2.4	Model philosophy	231
12.3	Environ	mental test categories	233
	12.3.1	Combination or separation of sources	233
	12.3.2	Pyroshock environmental categories	233
12.4	Shock s	ensitive equipment and severity criteria	235
	12.4.1	Identification of shock sensitive equipment	235
	12.4.2	Severity criteria	235
	12.4.3	Synthesis	247
12.5	Equivale	ence between shock and other mechanical environment	248
	12.5.1	Quasi static equivalence - effective mass method	248
	12.5.2	Use of sine vibration test data	251
	12.5.3	Use of random vibration test data	
12.6	Similarit	ty between equipment – Verification by similarity	257
	12.6.1	Introduction	257
	12.6.2	Similarity criteria for shock	257
	12.6.3	Example of process for verification by similarity	259
12.7	Specific	guidelines for shock verification	
	12.7.1	Optical instrument	
	12.7.2	Propulsion sub system	270
13 Sho	ock test	ing	
13.1	Shock to	est specifications	283
	13.1.1	Test levels and forcing function	
	13.1.2	Number of applications	
	13.1.3	Mounting conditions	
	13.1.4	Test article operation	
	13.1.5	Safety and cleanliness	
	13.1.6	Instrumentation	
	13.1.7	Test tolerances	

SIST-TP CEN/TR 17603-32-25:2022

ce (explosive 302 act (metal- 308 amic shaker320 336 336 336
act (metal- 308 amic shaker320 336 336 351
amic shaker320 336 336 351
336 336
336 351
351
356
359
.f7-add6

	14.5.1	Definition	401	
	14.5.2 Basic scheme			
	14.5.3	Advanced scheme	403	
	14.5.4	Use and limitation	404	
14.6	Digital filters		406	
	14.6.1	Basis	406	
	14.6.2	Definition and parameters	406	
	14.6.3	FIR filters	407	
	14.6.4	IIR filters	408	
	14.6.5	Precautions	409	
15 Sho	ock data	a validation	410	
15.1	Overvie	W	410	
15.2	Visual i	nspection	410	
15.3	Data ar	alysis – simplified criteria	413	
	15.3.1	Duration analysis	413	
	15.3.2	Validity frequency range	413	
	15.3.3	Final validity criteria - Positive versus negative SRS	415	
15.4	Data ar	alysis – refined criteria – Velocity validation	415	
15.5	Correct	416		
	15.5.1	Overview	416	
	15.5.2	Correction for zeroshift	<u>1d6-</u> 416	
	15.5.3	Correction for power line pickup	420	
16 Intr	oductio	on to shock damage risk assessment and objective	424	
16.1	Overvie	w	424	
16.2	Assess	ment context	424	
16.3	Outputs	of SDRA and associated limitations	425	
17 Uni	t susce	ptibility with respect to shock	426	
17.1	Overvie	w	426	
17.2	Derivat	on of qualification shock levels at unit interface	428	
17.3	Identific	ation of critical frequency ranges	428	
17.4	Conside	erations related to life duration and mission	431	
17.5	List of s	hock sensitive components/units	431	
	17.5.1	Overview	431	
	17.5.2	Electronic components and associated degradation modes	432	
	17.5.3	Functional mechanical assemblies	456	
	17.5.4	Mechanisms and associated degradation modes	459	

SIST-TP CEN/TR 17603-32-25:2022

CEN/TR 17603-32-25:2022 (E)

18 Sho	18 Shock damage risk analysis4			
18.1	8.1 Required inputs for detailed SDRA			
18.2	Evaluation of transmissibility between equipment and sensitive components interfaces			
	18.2.1	Overview	461	
	18.2.2	Derivation by extrapolation from test data	461	
	18.2.3	Shock response prediction based on transmissibility	465	
	18.2.4	Guideline for equipment shock analysis	466	
18.3	Verifica	tion method per type of components and/or units	480	
	18.3.1	Electronic equipment	480	
	18.3.2	Mechanisms – Ball bearings	502	
	18.3.3	Valves	526	
	18.3.4	Optical components	533	

iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST-TP CEN/TR 17603-32-25:2022 https://standards.iteh.ai/catalog/standards/sist/05931b1e-4435-4af7-add6ba28eaf62393/sist-tp-cen-tr-17603-32-25-2022

European Foreword

This document (CEN/TR 17603-32-25:2022) has been prepared by Technical Committee CEN/CLC/JTC 5 "Space", the secretariat of which is held by DIN.

It is highlighted that this technical report does not contain any requirement but only collection of data or descriptions and guidelines about how to organize and perform the work in support of EN 16603-32.

This Technical report (CEN/TR 17603-32-25:2022) originates from ECSS-E-HB-32-25A.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights.

This document has been prepared under a mandate given to CEN by the European Commission and the European Free Trade Association.

This document has been developed to cover specifically space systems and has therefore precedence over any TR covering the same scope but with a wider domain of applicability (e.g.: aerospace).

<u>SIST-TP CEN/TR 17603-32-25:2022</u> https://standards.iteh.ai/catalog/standards/sist/05931b1e-4435-4af7-add6ba28eaf62393/sist-tp-cen-tr-17603-32-25-2022

Introduction

In recent years, discussions concerning "what to do about shock" in relation to spacecraft have taken more importance. During launch and deployment operations, a spacecraft can be exposed to energetic shock environments. As spacecraft have become more capable, more equipment can be flown, and components are closer together. In addition, more sophisticated and delicate instruments are flown to maximize mission results.

As such, the shock environment has become a source of concern for spacecraft and payload developers. However, not only the definition of the environment, but also the analysis and test verification is complex.

In the same way than for other mechanical environment, it is important to properly address the shock early in the development phase until the final verification of the shock environment, to ensure a successful qualification.

The experience, gained over the past years by Agencies and industries, greatly improves the state of the art in this domain and has helped clear a large number of equipment and spacecraft for launch.

However, one of the problems with respect to mechanical shock design and verification is the fact that relevant information is spread over ESA and industry documents and specialists. To improve this, the current know-how on mechanical shock design and verification is documented in the present handbook in order to make this expertise available to all European spacecraft and payload developers.

The handbook is divided into four parts:

- Part 1 Overview 28eaf62393/sist-tp-cen-tr-17603-32-25-2022
- Part 2 Shock input derivation to space segment elements and equipment
- Part 3 Shock verification approach
- Part 4 Shock damage risk assessment

1 **Scope**

The intended users of the "Mechanical shock design and verification handbook" are engineers involved in design, analysis and verification in relation to shock environment in spacecraft. The current know-how relevant to mechanical shock design and verification is documented in this handbook in order to make this expertise available to all European spacecraft and payload developers.

The handbook provides adequate guidelines for shock design and verification; therefore it includes advisory information, recommendations and good practices, rather than requirements.

The handbook covers the shock in its globally, from the derivation of shock input to equipment and sub-systems inside a satellite structure, until its verification to ensure a successful qualification, and including its consequences on equipment and sub-systems. However the following aspects are not treated herein:

- No internal launcher shock is treated in the frame of this handbook even if some aspects are common to those presented hereafter. They are just considered as a shock source (after propagation in the launcher structure) at launcher/spacecraft interface. 5-4417-add6-
- Shocks due to fall of structure or equipment are not taken into account as they are not in the frame of normal development of a spacecraft.

2 References

2.1 References of Part 1

- [RD-01] Guide de spécification d'essais et de conception d'équipements, Grzeskowiak, MBDA, Jan. 2003
 [RD-02] Mechanical Vibration and Shock Mechanical Shock, Volume 2, C. Lalanne
 [RD-03] Harris' Shock and Vibration Handbook, CM Harris, AG Piersol, Fifth edition
 [RD-04] Pyroshock Test Criteria, NASA Technical Standard, NASA-STD-7003, May 1999
 [RD-05] Environmental Engineering considerations and laboratory tests, MIL Technical Standard, MIL-STD-810F, Jan. 2000
- [RD-06] Pyrotechnic Shock Loads, Test evaluation, equipment protection, E. Hornung, Daimler-Benz Aerospace AG, Space infrastructure, Bremen, Germany, H. Öery, University Aaschen, Germany – 48th Congress of the International Astronautical Federation – Turin, Oct. 1997
- [RD-07] Susceptibility of equipment to pyroshocks Return of experience from ESA programmes, Kiryenko, Parquet, Grzeskowiak, ESA/ESTEC and MBDA, Dec. 2002
- [RD-08] An introduction to the shock response spectrum, Tom Irvine, May 2002.
- [RD-09] The shock response spectrum at low frequencies, D. O. Smallwood, Sandia National Laboratories, Albuquerque, NM

2.2 References of Part 2

- [RD-010] Report on alternative devices to pyrotechnics on spacecraft, M. Lucy, R. Hardy, E. Kist, J. Watson, S. Wise, National Aeronautics and Space Administration, Langley Research Center
- [RD-011] Very low shock release pyromechanisms, Geachter, Tarkhani, LACROIX PYROTECHNOLOGIES, Dec. 2002
- [RD-012] Dynamics simulation of pyro actuated "ball lock" separation system for micro-satellites to evaluate release shock, S. Somanath, E.J. Francis, Vikram Sarabhai Space Centre (India) – ESA - 9th European Space Mechanisms and Tribology Symposium – Liege Belgium 19-21th September 2001

- [RD-013] TO5 Shock Measurement:- Exploitation des essais de chocs réalisés sur les composants pyrotechniques, Valerio Cippola, CNES, 2002
- [RD-014] Shock predictions for aerospace applications return of experience from ESA programmes, Kiryenko, Kasper, Ngan, 6th International Symposium on Launcher Technologies, Munich, 2005
- [RD-015] Shock environment in spacecraft from an early definition to a final verification, Kiryenko, Parquet, ESA/ESTEC, Dec. 2002
- [RD-016] Guide de specification d'essais et de conception d'equipements, H. Grzeskowiak, MBDA, Jan. 2003
- [RD-017] Aerospace Systems Pyrotechnic Shock Data (Ground Test and Flight), Martin Marietta Corporation, Mars 1970
- [RD-018] A Comparison of the Normal Tolerance Limit and Bootstrap Methods With Application to Spacecraft Acoustic Environments, William O. Hughes, July 2005
- [RD-019] Factors for One-Sided Tolerance Limits and for Variables Sampling Plans, Owen, D.B., Sandia Monograph SC-R-607, Sandia Corporation, 1963
- [RD-020] Pyroshock Test Criteria, NASA Technical Standard, NASA-STD-7003, May 1999
- [RD-021] Dynamic Environmental Criteria, NASA Technical Standard NASA-STD-7005, March 2001
- [RD-022] Harris' Shock and Vibration Handbook, CM Harris, AG Piersol, Fifth edition
- [RD-023] Pyroshock Test Criteria, NASA Technical Standard, NASA-STD-7003, May 1999
- [RD-024] Environmental Engineering considerations and laboratory tests, MIL Technical Standard, MIL-STD-810F, Jan. 2000 93/sist-tp-cen-tr-17603-32-25-2022
- [RD-025] Survey of pyroshock prediction methodology, D.L. Van Ert
- [RD-026] R&D Propagation de choc Rapport final, Pichon, EADS-Astrium, July 2002
- [RD-027] Simulation de la transmission de chocs avec le logiciel PAMSHOCK, B. Laine, Alcatel Alenia Space, April 2002
- [RD-028] Pyroshock modelling using mechanical shock sources, J.B. Bernaudin, EADS-Astrium, Dec. 2002
- [RD-029] Shock propagation prediction in satellite structures, Pichon, EADS-Astrium, Dec. 2002
- [RD-030] Shock propagation simulation using FEM software, S. Mary, V. Cipolla, CNES, May 2005
- [RD-031] Ariane 5 shock environment qualification for an earth observation satellite, E. Courau, May 2005
- [RD-032] W. Westphall, "Ausbreitung vor Körperschall in Gebäuden", Acustica, Vol 7, 1957, p.335-348
- [RD-033] Richard H. Lyon, Gideon Maidanik, "Power Flow between Linearly Coupled Oscillators", Acoust. Soc. Am. 34, 623 (1962)