INTERNATIONAL STANDARD

ISO/IEC 14496-26

First edition 2010-05-01 **AMENDMENT 5** 2018-09

Information technology — Coding of audio-visual objects —

Part 26: **Audio conformance**

AMENDMENT 5: Conformance for iTeh STnewlevels of ALS simple profile, SBR (stenhancementsai)

ISO/IEC 14496-26:2010/Amd 5:2018

https://standards.iteh. Partie 26::Conformité audio 1af6-4a3a-9dd8-bbcade61ebaa/iso.iec-14496-26-2010-amd-5-2018

AMENDEMENT 5

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/IEC 14496-26:2010/Amd 5:2018 https://standards.iteh.ai/catalog/standards/sist/6e592e93-1af6-4a3a-9dd8-bbcade61ebaa/iso-iec-14496-26-2010-amd-5-2018

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2018

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Fax: +41 22 749 09 47 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards through technical committees established by the respective organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of document should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/IEC JTC 1, Information technology, Subcommittee SC 29, Coding of audio, picture, multimedia and hypermedia information.

A list of all parts in the ISO/IEC 14496 series can be found on the ISO website.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/IEC 14496-26:2010/Amd 5:2018 https://standards.iteh.ai/catalog/standards/sist/6e592e93-1af6-4a3a-9dd8-bbcade61ebaa/iso-iec-14496-26-2010-amd-5-2018

Information technology — Coding of audio-visual objects —

Part 26:

Audio conformance

AMENDMENT 5: Conformance for new levels of ALS simple profile, SBR enhancements

3

Add a new paragraph as third paragraph of this subclause:

The conformance bitstreams and decoded wav-files package can be found at: http://standards.iso.org/iso-iec/14496/-26/ed-1/en/amd/5

iTeh STANDARD PREVIEW

Replace the paragraph for <tool Stighndards.iteh.ai)

<tool> indicates the SBR module mainly targeted by the test sequence. Possible values are "e" for testing the envelope adjuster "s" for testing sine addition, "gh" for testing time-grid transitions in combination with changes of SBR header data "i" for testing inverse filtering, "qmf" for testing the QMF implementation, "cm" and "gen" for testing various channel modes, "sig" for testing SBR signalling, "twi" for QMF identification, "sr" for testing various combinations of sampling rates, and "esbr" for testing SBR enhancements.

7.17.1.1

Add a new paragraph at the end of this subclause:

If SBR enhancements (eSBR) are used, eSBR data shall be stored as outlined in ISO/IEC 14496-3:2009, Annex 8.A.

7.17.1.2.1.6

Add a new subclause at the end of this sublclause:

7.17.1.2.1.7 esbr_data()

The top level syntactic element for conveying SBR enhancement data to the decoder is defined in ISO/IEC 14496-3:2009/Amd.7:2018. No restrictions apply to bitstream elements within esbr data().

If SBR enhancements are used in combination with parametric stereo, ps_data() shall precede esbr_data() in the compressed data.

ISO/IEC 14496-26:2010/Amd.5:2018(E)

7.17.2.1

Add a new paragraph at the end of this subclause:

If no esbr_data() is present in the current frame the decoder shall resort to legacy SBR processing (i.e. bs_sbr_preprocessing = 0; sbrPatchingMode = 1).

7.17.2.3
Update Table 69 with the grey-shaded columns/rows.

file base name	content	bit rate	QMF Iden- tification	QMF Accu-	enve- lope	grid con-	head- er	in- verse	addi- tional	SBR pre-pro-	har- monic	C R	Di ff	RMS max	test proce- dure
		(kbit /s)		racy	Ad- juster Accu- racy	trol tests	cha nge tes ts	filter- ing tests	sines tests	cessing tests	trans- poser tests	С	ma x	(lin ear val ue)	
al_sbr_twi	none	24	у	у	— —	_	_	_	у	_		_	-	—	_
al_sbr_qmf	Sine Sweep	24	_	у	_	_	_	_	_	_	_	_	5	1.4	maxDiff/ RMS
al_sbr_e	rec- tangle * 10Hz sine	24/ 48	_	_	у	_ 	_	-	_ DI	_	_	y a	90	2.0	maxDiff/ RMS
al_sbr_gh	rec- tangle * 10Hz sine	24/ 48	_ 1	l en	(st	and	y lar	RD ds.i	teh.	ai)	HE W	_	51	1.5	maxDiff/ RMS
al_sbr_i ^b	rectan- gle + noise	24/ 48	- https:/	_ /standar				Ø:2010/ ards/sis		<u>2018</u> le93-1af6	<u> </u>	y ^a d8-	36	3.4	maxDiff/ RMS
al_sbr_s	noise	24	_	_bbc	ade <u>6</u> 1eb	aa <u>/is</u> o-	iec <u>-</u> 14	49 <u>6-</u> 26	- 2 010-	amd <u>-5</u> -20	18	_	1 2 0	1.9	maxDiff/ RMS
al_sbr_cm	music	24- 128	_	_	_	_	_	_	_	_	_	_	-	_	_
al_sbr_sig	music	48	_	_	_	_	_	_	_	_	_	_	_	_	_
al_sbr_sr	music	24- 56	_	_	_	_	_	_	_	_	_	_	-	_	_
al_sbr_gen	sine	192- 224								_	_				
al_sbr_ esbr_00	syn- thetic	24/ 48	_	_	_	_	_	_	_	у	_	_	T B D	TBD	maxDiff/ RMS
al_sbr_ esbr_01	syn- thetic	24/ 48	_	_	_	_	_	_	_	_	у	_	T B D	TBD	maxDiff/ RMS
al960_sbr_ qmf	Sine Sweep	24	_	у	_	_	_	_	_	_	_	_	T B D	TBD	maxDiff/ RMS
al960_sbr_e	rec- tangle* 10Hz sine	24/ 48	_	_	у	_	_	_	_	_	_	уA	T B D	TBD	maxDiff/ RMS

CRC enabled for 32 kHz testvectors.

b The following bitstreams also exist with the suffix _new: al_sbr_i_32_1, al_sbr_i_44_1, al_sbr_i_48_1. These are preferred for conformance testing while the ones without this suffix are deprecated.

file base name	content	bit rate (kbit /s)	QMF Identification	QMF Accu- racy	enve- lope Ad- juster Accu- racy	grid con- trol tests	head- er cha nge tes ts	in- verse filter- ing tests	addi- tional sines tests	SBR pre-pro- cessing tests	har- monic trans- poser tests	C R C	Di ff ma x	RMS max (lin ear val ue)	test proce- dure
al960_sbr_ gh	rec- tangle* 10Hz sine	24/ 48	_	_	_	у	у	_	_	_	_	_	T B D	TBD	maxDiff/ RMS
al960_sbr_i	rectan- gle + noise	24/ 48	_	_	_	_	_	у	_	_	_	yA	T B D	TBD	maxDiff/ RMS
al960_sbr_s	noise	24	_	_	_	_	_	_	у	_	_	_	T B D	TBD	maxDiff/ RMS

CRC enabled for 32 kHz testvectors.

7.18.1.1, paragraph 2

Replace:

... PS data shall be stored as outlined in ISO/IEC 14496-3, Annex 8.A, Combination of the SBR tool with the parametric stereo tool. iTeh STANDARD PREVIEW

With:

... PS data shall be stored as outlined in ISO/IEC 14496-3:2009, Annex 8.A.

ISO/IEC 14496-26:2010/Amd 5:2018

https://standards.iteh.ai/catalog/standards/sist/6e592e93-1af6-4a3a-9dd8bbcade61ebaa/iso-iec-14496-26-2010-amd-5-2018

7.22.2.3

Replace Table 74 with:

Table 74 — ALS test sequences

file base name	con- tent	Num- ber of Chan- nels	sam- pling fre- quency (kHz)	word length (bit)	adap- tive order	ran- dom access	block switch- ing	L T P	joint ste- reo	M C C	B- GMC	RL- SLMS	Profile and levels	Con- form- ance criteria
als_00	mu- sic	2	48, 96,192	16, 20, 24	у	y							No indi- cation	Bit exact
als_01	mu- sic	2	48, 96,192	16, 20, 24	у		у		у				No indi- cation	Bit exact
als_02	mu- sic	2	48, 96,192	16, 20, 24				у					No indi- cation	Bit exact
als_03	mu- sic	2	48, 96,192	16, 20, 24					у				No indi- cation	Bit exact
als_04	mu- sic	2	48, 96,192	16, 20, 24						у			No indi- cation	Bit exact

b The following bitstreams also exist with the suffix _new: al_sbr_i_32_1, al_sbr_i_44_1, al_sbr_i_48_1. These are preferred for conformance testing while the ones without this suffix are deprecated.

 Table 74 (continued)

file base name	con- tent	Num- ber of Chan- nels	sam- pling fre- quency (kHz)	word length (bit)	adap- tive order	ran- dom access	block switch- ing	L T P	joint ste- reo	M C C	B- GMC	RL- SLMS	Profile and levels	Con- form- ance criteria
als_05	mu- sic	2	48, 96,192	16, 20, 24							у		No indi- cation	Bit exact
als_06	mu- sic	2	48, 96,192	16, 20, 24								у	No indi- cation	Bit exact
als_07	mu- sic	2	192	32 float	у								No indi- cation	Bit exact
als_08	mu- sic	6	96	24	у	у	у	у	у	у	у		No indi- cation	Bit exact
als_09	bio data	512	2	16	у		у	у	у	у	у		No indi- cation	Bit exact
als_10	sine wave	1	48	16	у	у							No indi- cation	Bit exact
als_11	mu- sic	2	48	16	у	у	у	у	у	у		7	Simple Profile Level 1	Bit exact
als_12	mu- sic	2	48	1 ₂₄ e	-	AN tand	yAK ards	y it	y K eh.a	y V li)	דעון	V	Simple Profile Level 2	Bit exact
als_13	mu- sic	6	48 http	16 s://stane			y 496-26:20 /standards/				%-4 а3а	ı-9dd8-	Simple Profile Level 3	Bit exact
als_14	mu- sic	6	48	24 ^t	hcade61e	baa/iso-i	ec-14496-	26-2 y	0] 0-an	ф-5-2	2018		Simple Profile Level 4	Bit exact

12.2
Update Table 95 with the grey-shaded row:

Object type	sequence name	AAC sProfile								High Efficiency AAC Profile							High Efficiency AAC v2 Profile							
	Level	evel 1 2 3 4 5 6 7					1	2	3	4	5	6	7	1	2	3	4	5	6	7				
AAC LC	al00	≥6	≥3	NA	≥3	X	≥3	X	NA	≥3	≥3	≥3	X	≥3	X	NA	≥3	≥3	≥3	X	≥3	X		
	al01	≥6	≥3	NA	≥3	X	≥3	X	NA	≥3	≥3	≥3	X	≥3	X	NA	≥3	≥3	≥3	X	≥3	X		
	al02	≥6	≥3	NA	≥3	X	≥3	X	NA	≥3	≥3	≥3	X	≥3	X	NA	≥3	≥3	≥3	X	≥3	X		
	al03	≥6	≥3	NA	≥3	X	≥3	X	NA	≥3	≥3	≥3	X	≥3	X	NA	≥3	≥3	≥3	X	≥3	X		
	al04	≥6	≥3	NA	≥3	X	≥3	X	NA	≥3	≥3	≥3	X	≥3	X	NA	≥3	≥3	≥3	X	≥3	X		
	al05	≥6	≥3	NA	≥3	X	≥3	X	NA	≥3	≥3	≥3	X	≥3	X	NA	≥3	≥3	≥3	X	≥3	X		
	al06	≥6	≥3	NA	≥3	X	≥3	X	NA	≥3	≥3	≥3	X	≥3	X	NA	≥3	≥3	≥3	X	≥3	X		
	al07	≥6	≥3	NA	≥3	X	≥3	X	NA	≥3	≥3	≥3	X	≥3	X	NA	≥3	≥3	≥3	X	≥3	X		
	al08	≥6	≥3	NA	≥3	X	≥3	X	NA	≥3	≥3	≥3	X	≥3	X	NA	≥3	≥3	≥3	X	≥3	X		
	al14	≥6	≥3	NA	≥3	X	≥3	X	NA	≥3	≥3	≥3	X	≥3	X	NA	≥3	≥3	≥3	X	≥3	X		
	al16	≥6	≥3	NA	≥3	X	≥3	X	NA	≥3	≥3	≥3	X	≥3	X	NA	≥3	≥3	≥3	X	≥3	X		

Object type	sequence name			AAC	sPro	file			Hi	gh E	fficie	ency	AAC	Prof	High Efficiency AAC v2 Profile							
	Level	1	2	3	4	5	6	7	1	2	3	4	5	6	7	1	2	3	4	5	6	7
	al17	≥6	≥3	NA	≥3	X	≥3	X	NA	≥3	≥3	≥3	X	≥3	X	NA	≥3	≥3	≥3	X	≥3	X
	al18	≥6	≥3	NA	≥3	X	≥3	X	NA	≥3	≥3	≥3	X	≥3	Х	NA	≥3	≥3	≥3	X	≥3	X
	al19	≥6	≥3	NA	≥3	X	≥3	X	NA	≥3	≥3	≥3	X	≥3	X	NA	≥3	≥3	≥3	X	≥3	X
	al20						≥3	X						≥3	X						≥3	X
	al21						≥3	X						≥3	X						≥3	X
	al22						≥3	X						≥3	X						≥3	X
SBR	al_sbr_qmf								NA	≥6	≥3	≥3	≥3	≥3	≥3	NA	≥6	≥3	≥3	≥3	≥3	≥3
	al_sbr_e								NA	≥6	≥3	≥3	≥3	≥3	≥3	NA	≥6	≥3	≥3	≥3	≥3	≥3
	al_sbr_gh								NA	≥6	≥3	≥3	≥3	≥3	≥3	NA	≥6	≥3	≥3	≥3	≥3	≥3
	al_sbr_i								NA	≥6	≥3	≥3	≥3	≥3	≥3	NA	≥6	≥3	≥3	≥3	≥3	≥3
	al_sbr_s								NA	≥6	≥3	≥3	≥3	≥3	≥3	NA	≥6	≥3	≥3	≥3	≥3	≥3
	al_sbr_cm								NA	≥6	≥3	≥3	≥3	≥3	≥3	NA	≥6	≥3	≥3	≥3	≥3	≥3
	al_sbr_sig								NA	≥6	≥3	≥3	≥3	≥3	≥3	NA	≥6	≥3	≥3	≥3	≥3	≥3
	al_sbr_sr								NA	≥6	≥3	≥3	≥3	≥3	≥3	NA	≥6	≥3	≥3	≥3	≥3	≥3
	al_sbr_gen													≥3	X						≥3	X
	al_sbr_esbr								NA	≥6	≥3	≥3	≥3	≥3	≥3	NA	≥6	≥3	≥3	≥3	≥3	≥3
PS	al_sbr_ ps_00		iT	eh	S7	ΓΑ	IN	D.	AF	D	P	RE	V	ID)	W	NA	X	X	X	x	X	X
	al_sbr_ ps_01				(S	ta	nc	la	rd	s.it	eh	.a)			NA	х	х	х	х	х	х
	al_sbr_ ps_02	httr	s://sta	andaro		O/II rai/d			-26:2 ndard			5 <u>:201</u> 2e93		-4a3	a-9da	NA 8-	х	х	х	х	х	х
	al_sbr_ ps_03			bbca					14490							NA	х	х	х	х	х	х
	al_sbr_ ps_04															NA	Х	Х	х	х	Х	х
	al_sbr_ ps_05															NA	X	Х	Х	Х	Х	х
	al_sbr_ ps_06															NA	X	X	Х	X	Х	х