

Designation: D1511-00 (Reapproved 2006) Designation: D1511 - 10

Standard Test Method for Carbon Black—Pellet Size Distribution¹

This standard is issued under the fixed designation D1511; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

1. Scope

- 1.1 This test method covers the determination of the pellet size distribution of carbon black.
- 1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.
- 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:²

D1799 Practice for Carbon BlackSampling Packaged Shipments

D1900 Practice for Carbon BlackSampling Bulk Shipments

D4483 Practice for Evaluating Precision for Test Method Standards in the Rubber and Carbon Black Manufacturing Industries

D5817 Practice for Carbon Black, PelletedReduction, Blending, and Drying of Gross Samples for Testing

E11 Specification for Woven Wire Test Sieve Cloth and Test Sieves

3. Significance and Use

3.1The variation in the size of the pellets may relate to the level of dispersion and to the ease of handling. Due to the many other variables that influence dispersion and handling, the significance of pellet size must be determined by the user. Summary of Test Method

 $3.1\,$ A 100 g sample of carbon black is shaken for 1 min in a sieve shaker to sort the pellets in a sieve assembly composed of the following sieve sizes: No. 10 (2000 μ m), No. 18 (1000 μ m), No. 35 (500 μ m), No. 60 (250 μ m), No. 120 (125 μ m), and pan. The mass retained on each sieve determines the pellet size distribution.

4. Significance and Use

4.1 The variation in the size of the pellets may relate to the level of dispersion and to the ease of handling. Due to the many other variables that influence dispersion and handling, the significance of pellet size must be determined by the user.

5. Apparatus

- 45.1 Riffle Sample Splitter as specified in Practice D5817.
- 45.2 Balance with a sensitivity of 0.1 g.
- 4.35.3 Sieves—U.S. Standard Sieves or equivalent, conforming to Specification E11. Sieve Nos. 10, 18, 35, 60, and 120, having openings respectively of 2000, 1000, 500, 250, and 125 μm, shall be used. The sieves shall be 25 mm (1 in.) in height and 200 mm (8 in.) in diameter.
 - 45.4 Bottom receiver pan and top sieve cover.
- 4.55.5 Sieve Shaker—Any equipment that will vibrate or shake a stack of sieves in a manner that will allow the pellets to separate into size fractions without excessive pellet breakage. The following three types of shakers have been found satisfactory for determining the pellet size distribution of pelleted carbon black.

4.5.1

¹ This test method is under the jurisdiction of ASTM Committee D24 on Carbon Black and is the direct responsibility of Subcommittee D24.51 on Carbon Black Pellet Properties.

Current edition approved July 1, 2006:2010. Published July 2006: August 2010. Originally approved in 1957. Last previous edition approved in 2000 as D1511 – 00 e2: (2006). DOI: 10.1520/D1511-00R06:10.1520/D1511-10.

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

5.5.1 Mechanical Sieve Shaker³—The Ro-Tap Siever imparts a uniform rotary and tapping motion to a stack of sieves as described in 4.35.3. The shaker machine shall be powered with an electric motor producing 181 to 183 rads/s (1725 to 1750 r/min). This will produce 140 to 160 raps/min and 280 to 320 rotary motions/min. The cover plate shall be fitted with a cork stopper that shall extend 3 to 9 mm ($\frac{1}{8}$ to $\frac{3}{8}$ in.) above the metal recess. Materials other than cork, such as rubber or wood, are unacceptable. The height of the RoTap hammer shall be set at 3.30 cm \pm 0.15 cm (1–5/16 in. \pm 1/16 in.).

4.5.2

<u>5.5.2 Vibratory Siever</u>⁴—The Retsch Sieve Shaker AS200 has variable timer and amplitude settings. When set at 3 min and 0.5 amplitude, the AS200 provides satisfactory results. It accommodates a stack of sieves as described in <u>4.35.3</u>.

4.5.

<u>5.5.3</u> Automatic Sieve Shaker⁵—The Gradex 2000 automatically performs all of the required steps including the weighing of the sample and the individual fractions retained on each sieve. The equipment consists of a balance, autofeed system, electric motor that imparts a uniform rotary motion, pneumatically operated rods to provide the tapping action, and computer and software to record and perform analyses. Shake time of 1 min provides satisfactory test results. The test sieves are described in <u>4.35.3</u>.

Note 1—Top sieve cover is not needed for the Gradex 2000.

Note 2—The Gradex is supplied with one standard tapping rod. It is recommended that two additional tapping rods be installed to provide additional tapping action.

5

6. Sampling

5.1Lot6.1 Lot samples shall be taken in accordance with Practices D1799 or D1900.

5 2Practice

<u>6.2 Practice</u> D5817 shall be used for blending or reducing samples.

6.

7. Procedure iTeh Standards

 $6\underline{7}$.1 Prepare carbon black for testing as noted in Section $5\underline{6}$.

Note 3—It is not good practice to weigh out the test portion by pouring it directly from the sample container since the smaller pellets will tend to remain in the container while the larger pellets pour out first. Dipping the black from the container is the preferred technique.

67.2 Prepare the sieve assembly by stacking the sieves in the following order from bottom to top: Bottom receiver pan, No. 120, No. 60, No. 35, No. 18, No. 10, and top sieve cover.

Note 4—Top sieve cover is not needed for the Gradex 2000. ASTM D1511-10

63

7.3 Mechanical and Vibratory Sieve Shakers

67.3.1 Weigh 100.0 g of carbon black.

- 67.3.2 Transfer weighed carbon black to the top sieve.
- 67.3.3 Install the sieve cover and transfer the sieve assembly to the shaker. The stack in the shaker should be adjusted to eliminate looseness.
 - 67.3.4 Start the shaker and allow it to shake as noted below:
 - 67.3.4.1 Mechanical Shaker—1 min with hammer operating.
 - 67.3.4.2 Vibratory Shaker—3 min and 0.5 mm amplitude.
- 67.3.5 Remove the sieve assembly from the apparatus and weigh individually the carbon black retained on each sieve and bottom receiver pan to the nearest 0.1 g.
 - 67.3.6 Record the data and calculate as noted in Section 78.

6.4

- 7.4 Automatic Sieve Shaker
- 67.4.1 Follow the manufacturer's instructions to load software and configure the shake time to 1 min.
- 67.4.2 Transfer the sieve assembly to the automatic sieve shaker.

³ The sole source of supply of the Ro-Tap Siever known to the committee at this time is WS Tyler, 8570 Tyler Blvd., Mentor, OH 44060, E-mail: wstyler@wstyler.com. If you are aware of alternative suppliers, please provide this information to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend.

⁴ The sole source of supply of the Retsch Sieve Shaker AS200 known to the committee at this time is Retsch Inc., 74 Walker Lane, Newtown, PA 18940, E-mail: info@retsch.us.com. If you are aware of alternative suppliers, please provide this information to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend.

⁵ The sole source of supply of the Gradex 2000 known to the committee at this time is Rotex, Inc., 1230 Knowlton Street, Cincinnati, OH 45223, E-mail: info@rotex.com. If you are aware of alternative suppliers, please provide this information to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend.