INTERNATIONAL STANDARD

Second edition 2021-08

Building environment design — Embedded radiant heating and cooling systems —

Part 3: Design and dimensioning

iTeh ST Conception de l'environnement des bâtiments — Systèmes intégrés de chauffage et de refroidissement par rayonnement — Stances de conception et dimensionnement

ISO 11855-3:2021 https://standards.iteh.ai/catalog/standards/sist/817f4773-5073-416d-9f37ee5c7fa92810/iso-11855-3-2021

Reference number ISO 11855-3:2021(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 11855-3:2021</u> https://standards.iteh.ai/catalog/standards/sist/817f4773-5073-416d-9f37ee5c7fa92810/iso-11855-3-2021

COPYRIGHT PROTECTED DOCUMENT

© ISO 2021

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Contents Pa						
Forew	/ ord		iv			
Intro	luction		v			
1	Scono		1			
1	scope					
2	Norm	mative references				
3	Terms	ns and definitions				
4	Symbols					
5	Radiant nanel					
0	5.1 Floor heating systems					
	011	5.1.1 Design procedure				
		5.1.2 Heating medium differential temperature				
		5.1.3 Characteristic curve	4			
		5.1.4 Field of characteristic curves	4			
		5.1.5 Limit curves	4			
		5.1.6 Downwards thermal insulation	5			
		5.1.7 Procedure for determining the design supply temperature of the heating				
		medium	10			
		5.1.8 Procedure for determining the design heating medium flow rate	13			
		5.1.9 Peripheral areas	14			
	5.2	Ceiling heating systems	14			
		5.2.1 General	14			
		5.2.2 Limit curvest and a reaction and the design besting modium flow rate	14			
	52	Wall boating systems	15			
	5.5	5.3.1 Conoral <u>ISO 11855-3:2021</u>	15			
		5 3 2 https://standards.iteb.ai/catalog/standards/sist/817f4773-5073-416d-9f37-	15			
		5.3.3 Procedure for determining the design heating medium flow rate	15			
	5.4	Floor cooling systems	16			
	-	5.4.1 Design procedure	16			
		5.4.2 Cooling medium differential temperature	16			
		5.4.3 Characteristic curve	17			
		5.4.4 Field of characteristic curves	17			
		5.4.5 Limit curves	17			
		5.4.6 Downwards thermal insulation	17			
		5.4.7 Procedure for determining the supply design temperature of cooling medium	17			
		5.4.8 Procedure for determining the design cooling medium flow rate	17			
	5.5	Ceiling cooling systems.	17			
	5.6	Wall cooling systems	17			
Annex	x A (nor	mative) Thermal insulation for type A and C	18			
Biblio	graphy	7	19			

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 205, *Building environment design*, in collaboration with the European Committee for Standardization (CEN) Technical Committee CEN/TC 228, *Heating systems and water based cooling systems in buildings*, in accordance with the Agreement on technical cooperation between ISO and CEN (Vienna Agreement).⁰²¹

This second edition cancels and replaces the first edition (ISO 11855-3:2012), which has been technically revised.

The main changes compared to the previous edition are as follows:

- the Scope clause was modified, series-related information has been moved to the Introduction section;
- normative references were modified;
- informative references have been moved to the Bibliography;
- <u>Annex A</u> was added for the calculation of the thermal resistance of the insulating layers.

A list of all parts in the ISO 11855 series can be found on the ISO website.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at <u>www.iso.org/members.html</u>.

Introduction

The radiant heating and cooling system consists of heat emitting/absorbing, heat supply, distribution, and control systems. The ISO 11855 series deals with the embedded surface heating and cooling system that directly controls heat exchange within the space. It does not include the system equipment itself, such as heat source, distribution system and controller.

The ISO 11855 series addresses an embedded system that is integrated with the building structure. Therefore, the panel system with open air gap, which is not integrated with the building structure, is not covered by this series.

The ISO 11855 series is applicable to water-based embedded surface heating and cooling systems in buildings. The ISO 11855 series is applied to systems using not only water but also other fluids or electricity as a heating or cooling medium. The ISO 11855 series is not applicable for testing of systems. The methods do not apply to heated or chilled ceiling panels or beams.

The object of the ISO 11855 series is to provide criteria to effectively design embedded systems. To do this, it presents comfort criteria for the space served by embedded systems, heat output calculation, dimensioning, dynamic analysis, installation, control method of embedded systems, and input parameters for the energy calculations.

The ISO 11855 series consists of the following parts, under the general title *Building environment design* — *Embedded radiant heating and cooling systems*:

- Part 1: Definitions, symbols, and comfort criteria PREVIEW
- Part 2: Determination of the design heating and cooling capacity
- Part 3: Design and dimensioning
- Part 4: Dimensioning and calculation of the dynamic heating and cooling capacity of Thermo Active Building Systems (TABS)
 ee5c7fa92810/iso-11855-3-2021
- Part 5: Installation
- Part 6: Control
- Part 7: Input parameters for the energy calculation

ISO 11855-1 specifies the comfort criteria which should be considered in designing embedded radiant heating and cooling systems, since the main objective of the radiant heating and cooling system is to satisfy thermal comfort of the occupants. ISO 11855-2 provides steady-state calculation methods for determination of the heating and cooling capacity. ISO 11855-3, this document, specifies design and dimensioning methods of radiant heating and cooling systems to ensure the heating and cooling capacity. ISO 11855-4 provides a dimensioning and calculation method to design Thermo Active Building Systems (TABS) for energy saving purposes, since radiant heating and cooling systems can reduce energy consumption and heat source size by using renewable energy. ISO 11855-5 addresses the installation process for the system to operate as intended. ISO 11855-6 shows a proper control method of the radiant heating and cooling systems to ensure the maximum performance which was intended in the design stage when the system is actually being operated in a building. ISO 11855-7 presents a calculation method for input parameters to ISO 52031.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 11855-3:2021</u> https://standards.iteh.ai/catalog/standards/sist/817f4773-5073-416d-9f37ee5c7fa92810/iso-11855-3-2021

Building environment design — Embedded radiant heating and cooling systems —

Part 3: **Design and dimensioning**

1 Scope

This document establishes a system design and dimensioning method to ensure the heating and cooling capacity of the radiant heating and cooling systems.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 11855-1, Building environment design —Embedded radiant heating and cooling systems — Part 1: Definition, symbols, and comfort criteria

ISO 11855-2:2021, Building environment design S. Embedded radiant heating and cooling systems — Part 2: Determination of the design heating and cooling capacity

ISO 11855-5:2021, Building environment design Embedded radiant heating and cooling systems — Part 5: Installation ee5c7fa92810/iso-11855-3-2021

3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 11855-1 apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at https://www.iso.org/obp
- IEC Electropedia: available at <u>https://www.electropedia.org/</u>

4 Symbols

For the purposes of this document, the symbols in <u>Table 1</u> apply.

Symbol	Unit	Quantity
A _F	m ²	Area of the heating or cooling surface
A _A	m ²	Area of the occupied heating or cooling surface
A _R	m ²	Area of the peripheral heating or cooling surface
C _{Wa}	J/(kg·K)	Specific heat of water
K _H	W/(m ² ⋅K)	Equivalent heat transmission coefficient
l _p	m	Distance between the joists
l _W	m	Thickness of the joist

Table 1 — Symbols

Symbol	Unit	Quantity
m _c	kg/s	Design cooling medium flow rate
m _H	kg/s	Design heating medium flow rate
$q_{\rm des}$	W/m ²	Design heat flux
q _{des,A}	W/m ²	Design heat flux in the occupied area
q _{des,R}	W/m ²	Design heat flux in the peripheral area
$q_{\rm G}$	W/m ²	Limit heat flux
q _{max}	W/m ²	Maximum design heat flux
$Q_{\rm des}$	W	Design heating/cooling capacity
$Q_{\rm N}$	W	Design heating/cooling load
$Q_{\rm N,s}$	W	Design sensible cooling load
$Q_{\rm N,l}$	W	Design latent cooling load
Q _{out}	W	Heat output of supplementary heating equipment
R _{h,bk}	(m ² K)/W	Thermal resistance on the surface of the back side of the wall
R _{h,c}	(m ² K)/W	Thermal resistance on ceiling surface under the floor heated room
R _o	(m ² K)/W	Partial inwards thermal resistance of the surface structure
R _u	(m ² K)/W	Partial outwards thermal resistance of the surface structure
$R_{\lambda,\mathrm{B}}$	(m ² ·K)/W	Thermal resistance of surface covering FVFW
$R_{\lambda,c}$	(m ² ·K)/W	Thermal resistance of ceiling slab structure
$R_{\lambda,ins}$	(m ² ·K)/W	Back side thermal resistance of insulating layer
$R_{\lambda,\mathrm{pl}}$	(m ² ·K)/W	Thermal resistance of plaster layer
s _{ins}	m http:	Effective thickness of thermal insulating layer3-416d-9137-
W	m	Pipe spacing
h _C	W/(m ² K)	Heat transfer coefficient at ceiling heating surface
$h_{ m F}$	W/(m ² K)	Heat transfer coefficient at floor heating surface
h_{W}	W/(m ² K)	Heat transfer coefficient at wall heating surface
λ_{ins}	W/(m·K)	Effective thermal conductivity of the thermal insulation layer
λ_{i}	W/(mK)	Thermal conductivity of the thermal insulation layer between the joists
λ_{w}	W/(mK)	Thermal conductivity of the joist
$\theta_{\rm F,max}$	°C	Maximum surface temperature
$\theta_{\rm F,min}$	°C	Minimum surface temperature
θ_{i}	°C	Design indoor temperature
θ_{R}	°C	Return temperature of heating or cooling medium
θ_{V}	°C	Supply temperature of heating or cooling medium
$\theta_{\rm V,des}$	°C	Design supply temperature of heating/cooling medium
$\Delta \theta_{\mathrm{H}}$	К	Heating or cooling medium differential temperature
$\Delta \theta_{\rm C,des}$	К	Design cooling medium differential temperature
$\Delta \theta_{\rm H,des}$	К	Design heating medium differential temperature
$\Delta \theta_{\mathrm{H,G}}$	К	Limit of heating/cooling medium differential temperature
$\Delta \theta_{\rm V,des}$	К	Design heating/cooling medium differential supply temperature
σ	К	Temperature drop/rise between supply and return medium

Table 1 (continued)

Radiant panel 5

5.1 Floor heating systems

Design procedure 5.1.1

Floor heating system design requires determining heating surface area, type, pipe size, pipe spacing, supply temperature of the heating medium, and design heating medium flow rate. The design steps are as follows.

- Step 1: Calculate the design heating load Q_N . The design heating load Q_N shall not include the adjacent heat losses. This step should be conducted in accordance with a standard for heating load calculation, such as EN 12831, based on an index such as operative temperature (OT) (see ISO 11855-1).
- Determine the area of the heating surface $A_{\rm F'}$ excluding any area covered by immovable objects Step 2: or objects fixed to the building structure.
- Step 3: Establish a maximum permissible surface temperature in accordance with ISO 11855-1.
- Step 4: Determine the design heat flux q_{des} according to Formula (1). For floor heating systems including a peripheral area, the design heat flux of peripheral area $q_{\text{des},R}$ and the design heat flux of occupied area $q_{des,A}$ shall be calculated respectively on the area of the peripheral heating surface A_{R} and on the area of the occupied heating surface A_A complying with Formula (2).

$$q_{des} = \frac{Q_{N}}{A_{F}} \frac{\text{iTeh STANDARD PREVIEW}}{(\text{standards.iteh.ai})}$$
(1)
$$Q_{N} = q_{des R} \times A_{R} + q_{des A} \times A_{A}$$
(2)

$$Q_{\rm N} = q_{\rm des,R} \times A_{\rm R} + q_{\rm des,A} \times A_{\rm A}$$

- Step 5: For the design of the floor heating systems, determine the room used for design with the maximum design heat flux $q_{\text{max}} = q_{\text{des}} \frac{1}{810}$
- Determine the floor heating system such as the pipe spacing and the covering type, and design Step 6: heating medium differential temperature $\Delta \theta_{
 m H,des}$ based on the maximum design heat flux $q_{
 m max}$ and the maximum surface temperature $\theta_{\rm F,max}$ from the field of characteristic curves according to ISO 11855-2 and 5.1.7.
- Step 7: If the design heat flux q_{des} cannot be obtained by any pipe spacing for the room used for the design, it is recommended to include a peripheral area and/or to provide supplementary heating equipment. In this case, the maximum design heat flux q_{\max} for the embedded system may now occur in another room. The amount of heat output of supplementary heating equipment Q_{out} is determined by Formula (3):

$$Q_{\rm out} = Q_{\rm N} - Q_{\rm des} \tag{3}$$

where design heating capacity Q_{des} is calculated by Formula (4):

$$Q_{\rm des} = q_{\rm des} \times A_{\rm F} \tag{4}$$

Step 8: Determine the backside thermal resistance of insulating layer $R_{\lambda ins}$ and the design heating medium flow rate *m* (see <u>5.1.6</u> and <u>5.1.8</u>).

Step 9: Estimate the total length of heating circuit.

If intermittent operation is common, the characteristics of the increase of the heat flow and the surface temperature and the time to reach the allowable conditions in rooms just after switching on the system shall be considered.

5.1.2 Heating medium differential temperature

Heating medium differential temperature $\Delta \theta_{\rm H}$ is calculated as follows (refer to ISO 11855-2):

$$\Delta \theta_{\rm H} = \frac{\theta_{\rm V} - \theta_{\rm R}}{\ln \frac{\theta_{\rm V} - \theta_{\rm i}}{\theta_{\rm R} - \theta_{\rm i}}} \tag{5}$$

In this formula, the effect of the temperature drop of the heating medium is taken into account.

Characteristic curve 5.1.3

The characteristic curve describes the relationship between the heat flux q and the heating medium differential temperature $\Delta \theta_{\rm H}$. For simplicity, the heat flux *q* is taken to be proportional to the heating medium differential temperature $\Delta \theta_{\rm H}$:

$$q = K_{\rm H} \cdot \Delta \theta_{\rm H} \tag{6}$$

where $K_{\rm H}$ is the equivalent heat transmission coefficient determined in ISO 11855-2 depending on the type of the system.

5.1.4 Field of characteristic curves

The field of characteristic curves of a floor heating system with a specific pipe spacing W shall at least contain the characteristic curves for values of the thermal resistance of surface covering $R_{\lambda B} = 0$, $R_{\lambda,B} = 0,05, R_{\lambda,B} = 0,10$ and $R_{\lambda,B} = 0,15$ (m²K/W), in accordance with ISO 11855-2 (see Figure 1). Values of $R_{\lambda,B} > 0,15$ (m²K/W) shall not be used if possible **ardsiteh.al**)

5.1.5 **Limit curves**

ISO 11855-3:2021

https://standards.iteh.ai/catalog/standards/sist/817f4773-5073-416d-9f37-The limit curves in the field of characteristicacyster describe_in_accordance with ISO 11855-2, the relationship between the heating medium differential temperature $\Delta \theta_{\rm H}$ and the heat flux *q* in the case where the physiologically agreed limit values of surface temperatures are reached. For design purposes, i.e. the determination of design values of the heat flux and the associated heating medium differential temperature $\Delta \theta_{\rm H}$, the limit curves are valid for temperature drop between supply and return medium σ in a range of:

 $0 \text{ K} < \sigma < 5 \text{ K}$

The limit curves are used to specify the limit of heating medium differential temperature $\Delta \theta_{\mathrm{H,G}}$ and supply temperature (refer to Figure 6).

b Occupied area.

Х

Y

1

2

а

Figure 1 — Field of characteristic curves, including limit curves for floor heating, for constant pipe spacing

This example is for floor heating, indoor temperature = 20 °C and the maximum temperature is 29 °C (occupied areas) and 35 °C (peripheral area). For bathrooms (the indoor temperature is 24 °C), the limit curve for $(\theta_{F,max} - \theta_i) = 9$ K also applies.

Downwards thermal insulation 5.1.6

In order to limit the heat flow through the floor towards the space below, the required back-side thermal resistance of the insulating layer $R_{\lambda,ins}$ shall be specified in the design to be not lower than the value in ISO 11855-5:2021, 5.1.2.3.2.

For systems which have a flat insulating layer (types A, B, C, D and G in ISO 11855-2), the back-side thermal resistance of the insulating layer $R_{\lambda,\text{ins}}$ is calculated by Formula (7) where there is no stud. And the effective thickness of thermal insulating layer s_{ins} is identical to the thickness of the thermal insulating panel and the effective thermal conductivity of the thermal insulation layer λ_{ins} is calculated by Formula (7) where there are studs.

$$R_{\lambda,\text{ins}} = \frac{s_{\text{ins}}}{\lambda_{\text{ins}}}$$
(7)

Х