

SLOVENSKI STANDARD oSIST prEN ISO 11427:2023

01-maj-2023

Nakit in plemenite kovine - Določevanje srebra v zlitinah srebra - Potenciometrična metoda z uporabo kalijevega bromida (ISO/DIS 11427:2023)

Jewellery and precious metals - Determination of silver in silver alloys - Potentiometry using potassium bromide (ISO/DIS 11427:2023)

Schmuck und Edelmetalle - Bestimmung von Silber in Silberlegierungen - Potentiometrie unter Verwendung von Kaliumbromid (ISO/DIS 11427:2023)

Joaillerie, bijouterie et métaux précieux - Dosage de l'argent dans les alliages d'argent -Méthode potentiométrique utilisant le bromure de potassium (ISO/DIS 11427:2023)

a3598b30a2/osist-pren-iso-11427-2023

Ta slovenski standard je istoveten z: prEN ISO 11427

ICS: 39.060

Nakit

Jewellery

oSIST prEN ISO 11427:2023

en,fr,de

oSIST prEN ISO 11427:2023

iTeh STANDARD PREVIEW (standards.iteh.ai)

oSIST prEN ISO 11427:2023 https://standards.iteh.ai/catalog/standards/sist/30ec67c8-af32-4803-9daf-3ea3598b30a2/osist-pren-iso-11427-2023

DRAFT INTERNATIONAL STANDARD ISO/DIS 11427

ISO/TC 174

Voting begins on: **2023-03-14**

Secretariat: **DIN**

Voting terminates on: 2023-06-06

Jewellery and precious metals — Determination of silver in silver alloys — Potentiometry using potassium bromide

ICS: 39.060

iTeh STANDARD PREVIEW (standards.iteh.ai)

oSIST prEN ISO 11427:2023 https://standards.iteh.ai/catalog/standards/sist/30ec67c8-af32-4803-9daf-3ea3598b30a2/osist-pren-iso-11427-2023

This document is circulated as received from the committee secretariat.

THIS DOCUMENT IS A DRAFT CIRCULATED FOR COMMENT AND APPROVAL. IT IS THEREFORE SUBJECT TO CHANGE AND MAY NOT BE REFERRED TO AS AN INTERNATIONAL STANDARD UNTIL PUBLISHED AS SUCH.

IN ADDITION TO THEIR EVALUATION AS BEING ACCEPTABLE FOR INDUSTRIAL, TECHNOLOGICAL, COMMERCIAL AND USER PURPOSES, DRAFT INTERNATIONAL STANDARDS MAY ON OCCASION HAVE TO BE CONSIDERED IN THE LIGHT OF THEIR POTENTIAL TO BECOME STANDARDS TO WHICH REFERENCE MAY BE MADE IN NATIONAL REGULATIONS.

RECIPIENTS OF THIS DRAFT ARE INVITED TO SUBMIT, WITH THEIR COMMENTS, NOTIFICATION OF ANY RELEVANT PATENT RIGHTS OF WHICH THEY ARE AWARE AND TO PROVIDE SUPPORTING DOCUMENTATION.

ISO/CEN PARALLEL PROCESSING

Reference number ISO/DIS 11427:2023(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

oSIST prEN ISO 11427:2023 https://standards.iteh.ai/catalog/standards/sist/30ec67c8-af32-4803-9daf-3ea3598b30a2/osist-pren-iso-11427-2023

COPYRIGHT PROTECTED DOCUMENT

© ISO 2023

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Contents

Page

Forew	ord		iv
1	Scope		1
2	Normative references		
3	Term	s and definitions	1
4	Principle		1
5	Palladium can interfere with the measurement and is precipitated before commencing titration, other elements do not interfere with this method of determination. Reagents		
6	Арра	ratus	2
7	Samp	ling	2
8	Proce 8.1 8.2	edure Determination of potassium bromide solution factor. 8.1.1 General 8.1.2 Preparation of silver standards 8.1.3 Titration of the standard silver solution. 8.1.4 Calculation of the potassium bromide standard solution factor. Determination. 8.2.1 Preparation of the sample solution. 8.2.2 Elimination of palladium. 8.2.3	2 2 2 2 2 2 2 3 3 3 3 3 3
9	Calcu 9.1 9.2	lation and expression of results Calculation Repeatability	3 3
10 Biblio	Test i graph	eport andards.iteh.ai/catalog/standards/sist/30ec67c8-af32-4803-9daf- 3ea3598b30a2/osist-pren-iso-11427-2023 y	4 5

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 174, Jewellery and precious metals.

This third edition cancels and replaces the second edition (ISO 11427:2014) which has been technically revised.

The main changes compared to the previous edition are as follows:

Addition of oxygen content for reference pure silver in <u>5.4</u>.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at <u>www.iso.org/members.html</u>.

Jewellery and precious metals — Determination of silver in silver alloys — Potentiometry using potassium bromide

1 Scope

This document specifies a volumetric method for the determination of silver on a material considered homogeneous. The silver content of the sample lies preferably between 100 and 999,0 parts per thousand ($\%_0$) by weight. Fineness above 999,0 $\%_0$ can be determined using a spectroscopy method by difference (e.g. ISO 15096).

This method is intended to be used as the reference method for the determination of fineness in alloys covered by ISO 9202.

2 Normative references

There are no normative references in this document.

3 Terms and definitions

No terms and definitions are listed in this document.

4 Principle

The sample is dissolved in dilute nitric acid. The silver content of the resulting solution is determined by titration with standard potassium bromide solution using a potentiometric indication of the equivalence point. 3ea3598b30a2/osist-pren-iso-11427-2023

5 Palladium can interfere with the measurement and is precipitated before commencing titration, other elements do not interfere with this method of determination. Reagents

During the analysis, unless otherwise stated, use only reagents of recognized analytical grade and only distilled water or water of equivalent purity.

5.1 Nitric acid (HNO_3) ; 33 % (mass fraction), with sufficiently low content of halides (check with silver nitrate test).

5.2 Potassium bromide solution, *c* (KBr) = 0,1 mol/l.

Dissolve 11,901 g of potassium bromide (dried at 105 °C) in water and dilute to 1 000 ml.

5.3 Disodium dimethylglyoxime octahydrate solution.

Dissolve 10 g of disodium dimethylglyoxime octahydrate in 1 000 ml of water.

5.4 Pure silver, minimum purity 999,9 parts by mass per thousand (‰) and with an oxygen content < 100 ppm. The laboratory shall guarantee by analysis or validation that this requirement is meet.

NOTE Silver sheets contain usually less than 100 ppm of oxygen.

6 Apparatus

6.1 Customary laboratory apparatus.

6.2 Motor-driven plunger or piston-type burette, linked to a potentiometer or automatic titrator and capable of delivering increments of 0,05 ml at the equivalence point.

6.3 Titration apparatus, with combination silver electrode coated with silver bromide and Hg/ Hg_2SO_4 or other suitable reference electrode.

6.4 Analytical balance, with a reading accuracy of 0,01 mg.

7 Sampling

The sampling procedure for silver and silver alloys should be performed in accordance with ISO 11596.

8 Procedure

WARNING — Suitable health and safety procedures should be followed.

8.1 Determination of potassium bromide solution factor

8.1.1 General

When the composition of the samples is unknown, a preliminary analysis by suitable means shall be used to determine the approximate composition of the material, e.g. XRF (X-ray fluorescence) analysis

SIST prEN ISO 11427:2023

8.1.2 Preparation of silver standards/catalog/standards/sist/30ec67c8-af32-4803-9daf-

Weigh three samples of silver (5.4); each of 300 mg to 500 mg, accurately to the nearest 0,01 mg, and transfer them into three glass beakers. Add 5 ml of nitric acid (5.1) to each beaker, and warm gently to dissolve the silver. Cover the beakers with watch glasses. Heat until evolution of nitrogen oxides ceases. Allow to cool. Rinse the watch glasses into beakers. Add the minimum volume of water required to satisfy the requirements of the titration apparatus (6.3) in respect of measurement and stirring. Put the beaker in the titration apparatus (6.3).

The mass of the standard silver samples should lie within 20 mg of the mass of silver in the sample portion.

8.1.3 Titration of the standard silver solution

Add, via the plunger-burette (6.2) under continuous stirring, sufficient potassium bromide solution (5.2) to precipitate about 95 % of the silver in the solution. Titrate the remaining silver in such a manner that the equivalence point can be interpolated from 0,05 ml additions of the potassium bromide solution.

NOTE This split titration approach can be effected automatically, using an automatic titrator with socalled dynamic volume dosing based on the measured potential difference across the electrodes in the titration apparatus (6.3).

8.1.4 Calculation of the potassium bromide standard solution factor

The potassium bromide standard solution factor, F, is calculated using <u>Formula (1)</u>:

$$F = \frac{m_{\text{AgF}}}{V_{\text{AgF}}}$$

(1)

where

 m_{AgF} is the mass of silver, in milligrams;

 V_{AgF} is the volume of potassium bromide solution at equivalence point, in millilitres.

The successive values of factor determinations shall not differ from each other by more than 0,05 % relative value. The mean value, \overline{F} , shall be used in subsequent calculations for maximum accuracy. The potassium bromide solution factor shall be determined immediately before analysis of the sample portions.

8.2 Determination

8.2.1 Preparation of the sample solution

Weigh between 300 mg and 500 mg of sample to the nearest 0,01 mg, and transfer to a glass beaker. Add 5 ml nitric acid (5.1) and warm gently to dissolve the alloy. Tops of the beakers can be covered with watch glasses. Heat until evolution of nitrogen oxides ceases. Allow to cool. Rinse the watch glasses into beakers. Transfer to the titration apparatus (6.3). Add the minimum volume of water required to satisfy the requirements of the titration apparatus (6.3) in respect of measurement and stirring.

8.2.2 Elimination of palladium

Palladium, if present, shall be precipitated by adding an aqueous solution of disodium dimethylglyoxime octahydrate (5.<u>3</u>). For each 100 mg of palladium, add 50 ml of this solution before commencing titration. A filtration of the precipitate is not needed.

8.2.3 Titration of the sample solution

Proceed exactly as for the standard solution. It can be necessary to carry out a pilot determination to obtain an approximate value of the silver content.

9 Calculation and expression of results

9.1 Calculation

The mass, m_{Ags} in milligrams of silver in the sample portion is calculated using Formula (2):

$$m_{\rm Ags} = \overline{F} \cdot V_{\rm Ags} \tag{2}$$

where

 \overline{F} is the mean value of the potassium bromide standard solution factor, expressed in milligrams of silver for each millilitre of solution;

*V*_{Ags} is the volume of potassium bromide at equivalence point, in millilitres.

The silver content of the sample, W_{Ag} in parts per thousand (‰) by mass is calculated using Formula (3):

$$W_{\rm Ag} = \frac{m_{\rm Ags}}{m_{\rm s}} \cdot 10^3 \tag{3}$$

where

 $m_{\rm s}$ is the mass of the sample (8.2.1), in milligrams.

9.2 Repeatability

The results of duplicate determinations shall agree to better than 1 part per thousand (‰) by mass of silver. If the variation is greater than this, the assay shall be repeated.

10 Test report

The test report shall include the following information:

- a) identification of the sample including source, date of receipt, form of sample;
- b) sampling procedure;
- c) the method used by reference to this document (ISO/DIS 11427:2023);
- d) silver content of the sample, in parts per thousand (‰) by mass, as single values and mean values;
- e) if relevant, any deviations from the method specified in this document;
- f) any unusual features observed during the determination;
- g) date of test;
- h) identification of laboratory carrying out this analysis;
- i) signature of laboratory manager and operator. A RD PREVIEW

(standards.iteh.ai)

oSIST prEN ISO 11427:2023 https://standards.iteh.ai/catalog/standards/sist/30ec67c8-af32-4803-9daf-3ea3598b30a2/osist-pren-iso-11427-2023