

Designation: E 722 – 94 (Reapproved 2002)

Standard Practice for Characterizing Neutron Energy Fluence Spectra in Terms of an Equivalent Monoenergetic Neutron Fluence for Radiation-Hardness Testing of Electronics¹

This standard is issued under the fixed designation E 722; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the Department of Defense.

1. Scope

1.1 This practice covers procedures for characterizing a neutron fluence from a source in terms of an equivalent monoenergetic neutron fluence. It is applicable to neutron effects testing, to the development of test specifications, and to the characterization of neutron test environments. The sources may have a broad neutron-energy spectrum, or may be monoenergetic neutron sources with energies up to 20 MeV. The relevant equivalence is in terms of a specified effect on certain physical properties of materials upon which the source spectrum is incident. In order to achieve this, knowledge of the effects of neutrons as a function of energy on the specific property of the material of interest is required. Sharp variations in the effects with neutron energy may limit the usefulness of this practice in the case of mono-energetic sources.

1.2 This practice is presented in a manner to be of general application to a variety of materials and sources. Correlation between displacements $(1-3)^2$ caused by different particles (electrons, neutrons, protons, and heavy ions) is beyond the scope of this practice. In radiation-hardness testing of electronic semiconductor devices, specific materials of interest include silicon and gallium arsenide, and the neutron sources generally are test and research reactors and californium-252 irradiators.

1.3 The technique involved relies on the following factors: (1) a detailed determination of the energy spectrum of the neutron source, and (2) a knowledge of the degradation (damage) effects of neutrons as a function of energy on specific material properties.

1.4 The detailed determination of the neutron energy spectrum referred to in 1.3 need not be performed afresh for each test exposure, provided the exposure conditions are repeatable. When the spectrum determination is not repeated, a neutron fluence monitor shall be used for each test exposure.

1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

- 2.1 ASTM Standards:
- E 265 Test Method for Measuring Reaction Rates for Fast-Neutron Fluences by Radioactivation of Sulfur-32³
- E 693 Practice for Characterizing Neutron Exposures in Ferritic Steels in Terms of Displacement per Atom (DPA)³
- E 720 Guide for Selection and Use of Neutron-Activation Foils for Determining Neutron Spectra Employed in Radiation-Hardness Testing of Electronics³
- E 721 Test Method for Determining Neutron Energy Spec-
- tra with Neutron Activation Foils for Radiation-Hardness Testing of Electronics³
- E 844 Guide for Sensor Set Design and Irradiation for Reactor Surveillance, E706 (IIC)³
- E 944 Practice for Applications of Neutron Spectrum Adjustment Methods in Reactor Surveillance, (IIA)³

2.2 International Commission on Radiation Units and Measurements (ICRU) Reports:

- ICRU Report 13—Neutron Fluence, Neutron Spectra, and Kerma⁴
- ICRU Report 26—Neutron Dosimetry for Biology and Medicine⁴
- ICRU Report 33-Radiation Quantities and Units⁴

3. Terminology

3.1 Definitions of Terms Specific to This Standard:

¹ This practice is under the jurisdiction of ASTM Committee E10 on Nuclear Technology and Applicationsand is the direct responsibility of Subcommittee E10.07on Radiation Dosimetry for Radiation Effects on Materials and Devices.

Current edition approved Sept. 15, 1994. Published November 1994. Originally published as E 722 - 80. Last previous edition E 722 - 93.

² The boldface numbers in parentheses refer to a list of references at the end of this practice.

³ Annual Book of ASTM Standards, Vol 12.02.

⁴ Available from International Commission on Radiation Units and Measurements, 7910 Woodmont Ave., Bethesda, MD 20814.

Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.

3.1.1 *displacement damage function*— $(F_{D,mat})$ an energydependent parameter proportional to the quotient of the observable displacement damage per target atom and the neutron fluence.

3.1.1.1 Discussion—Observable changes in a material's properties attributable to the atomic displacement process are useful indices of displacement damage in that material. In cases where the observed displacement damage is not in linear proportion to the applied fluence, the displacement damage function represents the quotient $F_{D,mat}$ (E)/d Φ , in the limiting case of zero fluence. Examples of suitable representations of displacement damage functions are given in the annexes. In the case of silicon, it has been shown that the displacement damage function may be successfully equated with the displacement kerma factor. This question is discussed further in the annexes.

3.1.2 *displacement kerma factor*— $(K_{D,mat}(E))$ the energy dependent quotient of the displacement kerma per target atom and the neutron fluence.

3.1.2.1 *Discussion*—This quantity may be calculated from the microscopic neutron interaction cross sections, the kinematic relations for each reaction and from a suitable partition function which divides the total kerma into ionization and displacement kerma.

3.1.3 energy-spectrum hardness parameter—(H $_{mat} = \Phi_{eq,Eref,mat}/\Phi$) this parameter is defined as the ratio of the equivalent monoenergetic neutron fluence to the true total fluence, $\Phi_{eq,Eref,mat}/\Phi$. The numerical value of the hardness parameter is also equal to the fluence of monoenergetic neutrons at the specific energy, Eref, required to produce the same displacement damage in the specified material, mat unit fluence of neutrons of spectral distribution $\Phi(E)$.

3.1.3.1 *Discussion*—For damage correlation, a convenient method of characterizing the shape of an incident neutron energy-fluence spectrum $\Phi(E)$, is in terms of an energy spectrum hardness parameter (4). The hardness parameter in a particular neutron field depends on the displacement damage function used to compute the damage (see annexes) and is therefore different for different semiconductor materials.

3.1.4 equivalent monoenergetic neutron fluence— ($\Phi_{eq,Eref}$,mat) an equivalent monoenergetic neutron fluence, $\Phi_{eq,Eref,mat}$, characterizes an incident energy-fluence spectrum, $\Phi(E)$, in terms of the fluence of monoenergetic neutrons at a specific energy Eref required to produce the same displacement damage in a specified irradiated material, mat, as $\Phi(E)$.

3.1.4.1 Discussion—Note that $\Phi_{eq,Eref,mat}$ is equivalent to $\Phi(E)$ if, and only if, the specific device effect (for example, current gain degradation in silicon) being correlated is described by the displacement damage function used in the calculation.

3.1.5 kerma—(K_{mat} (E)) the sum of the initial kinetic energies of all the charged particles liberated by indirectly ionizing particles (for example, neutrons) in a volume element containing a unit mass of the specified material (see ICRU reports 13 and 33).

3.1.5.1 *Discussion*—When a material is irradiated by a neutron field, the energy imparted to the material may be described by the quantity kerma. The total kerma may be divided into two parts, ionization kerma and displacement

kerma. Calculations of ionization and displacement kerma in silicon and gallium arsenide as a result of irradiation by neutrons with energies up to 20 MeV are described in Refs **5-8** and in the annexes.

4. Summary of Practice

4.1 The equivalent monoenergetic neutron fluence, $\Phi_{eq,Eref}$,_{mat}, is given as follows:

$$\Phi_{\rm eq, Eref, mat} \frac{\int_{0}^{\infty} \Phi(E) F_{\rm D, mat}(E) dE}{F_{\rm D, Eref, mat}}$$
(1)

where:

$$\Phi(E)$$
 = incident neutron energy-fluence spectral dis-
tribution,

- $F_{D,mat}$ = neutron displacement damage function for the irradiated material (displacement damage per unit fluence) as a function of energy, and
- $F_{D,Eref,mat}$ = displacement damage reference value designated for the irradiated material and for the specified equivalent energy, Eref, as given in the annexes.

The energy limits on the integral are determined in practice by the incident-energy spectrum and by the material being irradiated.

4.2 The neutron energy spectrum hardness parameter, H_{mat} , is given as follows:

$$\mathbf{e}_{\mathbf{H}_{\text{mat}}} = \frac{\int_{0}^{\infty} \Phi(\mathbf{E}) F_{\text{D,mat}}(\mathbf{E}) d\mathbf{E}}{F_{D, Eref, mat} \int_{0}^{\infty} \Phi(E) dE}$$
(2)

4.3 Once the neutron energy-fluence spectrum has been determined (for example, in accordance with Test Method E 721) and the equivalent monoenergetic fluence calculated, then a monitor (such as an activation foil) can be used in subsequent irradiations at the same location to determine the fluence; that is, the neutron fluence is then described in terms of the equivalent monoenergetic neutron fluence per unit monitor response, $\Phi_{eq,Eref,mat}/M_r$. Use of a monitor foil to predict $\Phi_{eq,Eref,mat}$ is valid only if the energy spectrum remains constant.

5. Significance and Use

5.1 This practice is important in characterizing the radiation hardness of electronic devices irradiated by neutrons. This characterization makes it feasible to predict some changes in operational properties of irradiated semiconductor devices or electronic systems. To facilitate uniformity of the interpretation and evaluation of results of irradiations by sources of different energy spectra, it is convenient to reduce the incident neutron fluence from a source to a single parameter—an equivalent monoenergetic neutron fluence—applicable to a particular semiconductor material.

5.2 In order to determine an equivalent monoenergetic neutron fluence, it is necessary to evaluate the displacement damage of the particular semiconductor material. Ideally, this quantity is correlated to the degradation of a specific functional performance parameter (such as current gain) of the semiconductor device or system being tested. However, this correlation has not been established unequivocally for all device types and performance parameters since, in many instances, other effects also can be important. Ionization effects produced by the incident neutron fluence or by gamma rays in a mixed neutron fluence, short-term and long-term annealing, and other factors can contribute to observed performance degradation (damage). Thus, caution should be exercised in making a correlation between calculated displacement damage and performance degradation of a given electronic device. The types of devices for which this correlation is applicable, and numerical evaluation of displacement damage are discussed in the annexes.

5.3 The concept of 1-MeV equivalent fluence is widely used in the radiation-hardness testing community. It has merits and disadvantages that have been debated widely (9-12). For these reasons, specifics of a standard application of the 1-MeV equivalent fluence are presented in the annexes.

6. Procedure for Calculating $\Phi_{eq,Eref,mat}$

6.1 To evaluate Eq 1 and 2, determine the energy limits E_{min} and E_{max} to be used in place of zero and infinity in the integrals of (Eq 1) and (Eq 2) and the values of the displacement damage function $F_{D,mat}$ (E) for the irradiated material and perform the indicated integrations.

6.1.1 Choose the upper limit E_{max} to be at an energy above which the integral damage falls to an insignificant level. For Godiva- or TRIGA-type spectra, this limit is about 12 MeV.

6.1.2 Choose the lower-energy limit E_{min} to be at an energy below which the integral damage falls to an insignificant level. For silicon irradiated by Godiva-type spectra, this energy has been historically chosen to be about 0.01 MeV. More highly moderated spectra may require lower thresholds or specialized filtering requirements such as a boron shield, or both.

6.1.3 The values of the neutron displacement damage function used in Eq 1 and 2 obviously depend on the material and the equivalent energy chosen. For silicon, resonance effects cause large variations (by a factor of 20 or more) in the displacement damage function as a function of energy over the range from about 0.1 to 8 MeV (4). Therefore, monoenergetic neutron sources with these energies may not be useful for effects testing. Also, for a selected equivalent energy, the value of F_{D,Eref,mat} at that specific energy may not be representative of the displacement damage function at nearby energies. In such cases, a method of averaging the damage function over a range of energies around the chosen equivalent energy can be used. Such averaging is discussed in the annexes. Because the F_{D,mat} (E) term is normalized by dividing by F_{D,Eref,mat} in Eq 1 and 2, only the shape of the $F_{D,mat}$ (E) function versus energy is of primary importance. In such a case, precise knowledge of the absolute values of F_{D.mat} (E) is not required in evaluating $\Phi_{eq,Eref,mat}$ and H_{mat} .

7. Determining $\Phi_{eq,Eref,mat}$ with a Monitor Foil

7.1 At the same time that the energy spectrum, $\Phi(E)$, of the source is determined (for example, with an activation foil set in accordance with Guides E 720 or E 844, or both, and Test Method E 721 or Practice E 944, or both, place a fast-neutron monitor foil in the neutron field at an appropriate location.

After $\Phi_{eq,Eref,mat}$ is determined and the monitor foil counted, calculate the ratio of the equivalent monoenergetic fluence to the unit monitor response, $\Phi_{eq,Eref,mat}/M_r$.

7.2 Use the response of the fast-neutron monitor foil, M_r , to predict $\Phi_{eq,Eref,mat}$ in subsequent routine device test irradiations. For this method to be valid, it is important to keep the source-foil geometry essentially identical to that used for calibrating the monitor foil. Moderate changes in source-to-foil distance are allowable. In addition, make sure the source location (of a Godiva-type reactor) with respect to scattering materials (walls, floor, etc.) is the same. Do not change or move nearby scattering materials or moderators.

7.3 Precautions in maintaining original calibration conditions are necessary to avoid altering the neutron energy spectrum significantly in subsequent irradiations. An appreciable change in the spectrum will invalidate the calibration of the monitor foil and, therefore, would necessitate a new measurement of $\Phi(E)$ and recalibration of the monitor foil. Whenever the neutron source configuration is changed, as for example, if the core fuel elements are replaced or rearranged in a nuclear reactor, the activation foil spectrum measurements and all quantities derived from them may need to be remeasured.

7.4 The choice of a monitor foil material depends on several factors:

7.4.1 The activation threshold should be high enough so as to make it insensitive to neutrons below the E_{min} value used in Eq 1 and 2. However, the threshold energy should be low enough to sample a significant fraction of the total fluence.

7.4.2 The monitor foil should have a high neutron sensitivity and a convenient half-life.

7.4.3 The detector system available for counting the monitor foil may dictate the choice of foil material. A germanium gamma-ray detector system can be used, and ⁵⁴Fe or ⁵⁸Ni foils utilized as monitors. However, if a beta particle detector system is available, then ³²S foils are suitable. Details of the use of sulfur foils are given in Test Method E 265.

8. Report

8.1 In the report of the results of radiation-hardness tests in which an equivalent monoenergetic neutron fluence is calculated, the report should include at least the following information:

8.1.1 Semiconductor material and device performance parameter (for example, current gain in silicon bipolar transistors) degradation being correlated to displacement damage should be specified.

8.1.2 Neutron source as to type and mode of operation during tests (fast-pulse or steady state).

8.1.3 Neutron energy-fluence spectrum and how it was determined.

8.1.4 Monitor foil employed and the detector system used for counting the foil. If an effective fission cross section for the monitor foil is used, its value should be stated.

8.1.5 The neutron displacement damage function should be given, or referenced. The specific material (for example, silicon) whose applicable damage function was used must be specified. The values cited in Annex A1 and Annex A2 shall be used for silicon and GaAs, respectively.

8.1.6 Methods used for determining the average value of $F_{D,Eref,mat}$ and the value of Eref selected. The values cited in Annex A1 and Annex A2 shall be used for silicon and GaAs, respectively.

8.1.7 Method used for evaluating the integrals of Eq 1 and 2 (for example, the energy bin width and number of bins in a numerical integration).

8.1.8 Values of $\Phi_{eq,Eref,mat},$ H $_{mat},$ and $\Phi_{eq,Eref,mat}/M_r.$

9. Precision and Bias

9.1 The precision in calculating $\Phi_{eq,Eref,mat}$ and H_{mat} will depend on the method of evaluation of the integrals in Eq 1 and 2 (for example, the width of the energy bins used in a numerical integration).

9.2 The uncertainty of the calculated results depends on (1) knowledge of the neutron source energy-fluence spectrum, (2) knowledge of the displacement damage functions over that energy spectrum, and (3) knowledge of the value of the average displacement damage function at the specified equivalent energy.

9.3 A specific example of the uncertainty associated with the calculation of a 1-MeV equivalent fluence for silicon is given in Annex A1.

10. Keywords

10.1 displacement damage; electronic hardness; gallium arsenide; hardness parameter; silicon; silicon damage; silicon equivalent damage (SED); 1–MeV equivalent fluence

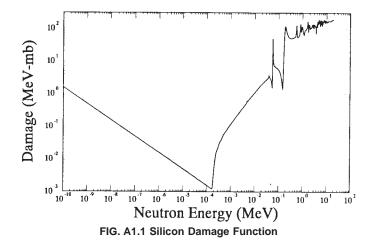
ANNEXES

(Mandatory Information)

A1. CALCULATION OF 1-MeV EQUIVALENT NEUTRON FLUENCE FOR SILICON

A1.1 Background

A1.1.1 The choice of the specific energy for determining an equivalent fluence has been the subject of some controversy within the electronics hardness-testing community (9). Some workers (10) have proposed that 1 MeV be used while others (11 12) have suggested 14 MeV to be more appropriate. The concept of 1-MeV equivalent fluence has gained broad acceptance in practice, and procedures for applying it to silicon are described in this annex in some detail.


A1.1.2 An important basis of the practice is the correlation of radiation damage effects in a semiconductor device with the displacement kerma produced in bulk silicon by neutron irradiation. This correlation assumes that volume (versus surface) effects are the dominant radiation damage mechanism. Experimental evidence indicates that displacement kerma is a valid measure of device performance degradation (for example, reduction in current gain) in bipolar transistors whose operation basically depends on volume mechanisms (13, 14). However, for device types governed by surface phenomena (such as MOSFET devices), it is clear that this correlation is not valid. Surface-effect devices are more sensitive than are volume-effect devices to ionization radiation effects produced either by a neutron field or a mixed neutron-gamma field. Therefore, the basic mechanism associated with device performance and the effect being correlated (for example, gain degradation) should be kept in mind before applying this practice at any equivalent energy.

A1.2 Calculation of $\Phi_{eq,1MeV,Si}$

A1.2.1 A 1-MeV equivalent fluence in a given material can be defined for an irradiation by neutrons of any neutron spectrum. The neutron energy fluence, $\Phi(E)$, may be that determined from a neutron transport calculation, that determined from measurements, or that given in an environment specification document. A1.2.2 The neutron energy-fluence spectrum, $\Phi(E)$, may be determined experimentally by measuring a set of activation foils and then by application of a spectral adjustment computer code (see Guide E 720 and Test Method E 721 for details).

A1.2.3 Results of calculations of silicon displacement kerma factors (displacement kerma per unit neutron fluence), $K_{_{D,Si}}$ (E), are given in Table A1.1 as a function of neutron energy over the range from 10^{-10} to 20 MeV (**11, 15**). The unit of the kerma factor is megaelectron volt times millibarns (MeV-mbarn). Each factor can be multiplied by 3.435×10^{-13} to convert to rad(Si)–cm², or by 3.435×10^{-19} to convert to J-m²/kg or Gy(Si)–m². The silicon displacement kerma factor as given in Table A1.1 is the accepted silicon damage function to be used in the application of this standard: $F_{D,Si}$ (E) = $K_{D,Si}$ (E). Fig. A1.1 shows the energy dependence of the silicon 1-MeV damage function.

A1.2.4 An average value of neutron displacement kerma factor near 1 MeV is difficult to determine because of sharp neutron cross-section resonances in that energy region. To avoid these difficulties, Namenson, Wolicki, and Messenger

(13) fitted the function AE(1 – exp(–B/E)) to various tabulations of K_D (E) versus energy. The values of A and B obtained by a least squares fit yielded an average value at 1 MeV of K_{D,1MeV,Si} = 95 \pm 4 MeV-mbarn. A similar procedure applied to the data given in Table A1.1 also gives a value close to 95 MeV-mbarn. Accordingly, the designated value of F_{D,1MeV,Si} to be used in Eq 1 and 2 to calculate a 1-MeV equivalent fluence is 95 MeV-mbarn.

A1.2.5 For purposes of intercomparison of hardness testing results from various laboratories, the value of $F_{D,1MeV,Si}$ used in obtaining such results is very important; therefore, reporting of results should include confirmation that the value of $F_{D,1MeV,Si}$ designated in A1.2.4 was used in any calculation.

A1.2.6 Once the neutron energy-fluence spectrum $\Phi(E)$ has been determined for the energy range of interest, then use numerical integration to evaluate Eq 1 and 2, using values for F_D (E) from Table A1.1 and $F_{D,1MeV,Si} = 95$ MeV-mb.

Note A1.1—The damage function provided here differs from that in versions of this practice earlier than E722–93, and will result in a different value for $\Phi_{eq,1MeV,Si}$. For fast-burst and TRIGA reactors, the value calculated for $\Phi_{eq,1MeV,Si}$ will typically be 5 to 10 % lower than that calculated using E722–85.

A1.3 Precision and Bias

A1.3.1 The values for $K_{D,Si}$ (E) given in Table A1.1 are determined by calculating the total kerma and then partitioning it into ionization and displacement fractions (5). Because of the lack of adequate theory to partition the kerma and uncertainities in cross sections, the estimated uncertainty in the displacement kerma factor is about 10 % up to 3 MeV. Correlation of displacement kerma with measured damage in many neutron fields has been confirmed with uncertainties no larger than 10 % (14).

A1.3.2 Comparisons between the calculations with the SAND II unfolding code (using activation-foil input data), neutron transport codes, and experimental spectrometry data give an estimated uncertainty in the determination of $\Phi(E)$ of about 20 % over the energy region of interest (15) (see Test Method E 721).

A1.3.3 Since this mandatory annex requires the use of Table A1.1 and $F_{D,1MeV,Si} = 95$ MeV-mbarn, no uncertainty in the calculation of 1-MeV equivalent fluence is attributable to the consistent use of these data. Therefore only the uncertainty in the determination of $\Phi(E)$ need be considered in assigning an uncertainty to the 1-MeV equivalent fluence. An uncertainty in the spectrum in the range ± 20 %, would most often lead to uncertainties no more than ± 10 % in the integral quantity $\Phi_{eq,1MeV,Si}$. While no specific group structure for representing the neutron energy-fluence is recommended, the choice of energy bin boundaries will affect the uncertainty in the 1-MeV equivalent fluence. The energy bin boundaries should be chosen with due consideration for the shape of both the neutron spectrum and the 1-MeV equivalent damage function. A poor choice of the energy group structure used to evaluate the integral in Eq 2 could increase this uncertainty (see 8.1.7).

TABLE A1.1 Silicon Displacement Kerma Function

Bin	Lower Energy	Damage	
#	(MeV)	(MeV-mb)	
1	19.9500	182.8700	
2	19.8500	183.0000	
3	19.7500	183.1200	
4	19.6500	183.2500	
5	19.5500	183.3800	
6 7	19.4500 19.3500	183.5100 183.6300	
8	19.2500	183.7500	
9	19.1500	183.8800	
10	19.0500	184.0000	
11	18.9500	184.1100	
12	18.8500	184.2000	
13	18.7500	184.2800	
14	18.6500	184.3700	
15	18.5500	184.4500	
16	18.4500	184.3100	
17	18.3500	183.9700	
18	18.2500	183.6200	
19 20	18.1500 18.0500	183.2800 182.9400	
20 21	17.9500	182.5900	
22	17.8500	182.2400	
23	17.7500	181.9100	
24	17.6500	181.5800	
25	17.5500	181.2400	
26	17.4500	180.6700	
27	17.3500	179.8800	
28	17.2500	179.0800	
29	17.1500	178.2800	
30	17.0500	177.4900	
31	16.9500	177.2400	
21 ³²	16.8500	177.5000	
33	16.7500	177.7600 178.0100	
35	16.5500	178.2700	
36	16.4500	178.3200	
37	16.3500	178.1800	
38	16.2500	178.0300	
39	16.1500	177.8900	
<u>-94(40/02)</u>	16.0500	177.7400	
h95e414350)-9baa-15.9500 bc72e8c	/astm-e 176.3000 2002	
42	15.8500	173.0300	
43	15.7500	171.3200	
44	15.6500	170.8600	
45 46	15.5500 15.4500	170.7200 170.5600	
40	15.3500	170.3800	
48	15.2500	170.2500	
49	15.1500	170.0900	
50	15.0500	169.9300	
51	14.9500	169.7900	
52	14.8500	169.6600	
53	14.7500	169.5200	
54	14.6500	169.3700	
55	14.5500	169.2100	
56 57	14.4500	168.7300	
57 58	14.3500 14.2500	167.9400 167.1400	
58 59	14.2500	166.3400	
60	14.0500	165.5400	
61	13.9500	165.4000	
62	13.8500	165.8600	
63	13.7500	166.2900	
64	13.6500	166.7300	
65	13.5500	167.1600	
66	13.4500	167.5300	
67	13.3500	167.8300	
68 69	13.2500 13.1500	168.1100 168.3900	

∰ E 722

TABLE A1.1 Continued

TABLE A1.1 Continued

	TABLE A1.1	Continuea		TABLE A1.1	Continuea
Bin	Lower Energy	Damage	Bin	Lower Energy	Damage
#	(MeV)	(MeV-mb)	#	(MeV)	(MeV-mb)
		. ,			· · · ·
70	13.0500	168.6600	143	5.7500	180.0500
71 72	12.9500 12.8500	168.6200 168.2800	144 145	5.6500 5.5500	152.0700
72	12.8500	167.9400	145	5.4500	145.6000 116.9800
74	12.6500	167.6000	140	5.3500	120.1500
75	12.5500	167.2700	148	5.2500	145.7000
76	12.4500	167.2200	149	5.1500	170.3100
77	12.3500	167.4700	150	5.0500	149.1600
78	12.2500	167.7100	151	4.9500	145.5000
79	12.1500	167.9500	152	4.8500	160.6700
80	12.0500	168.1700	153	4.7500	185.6100
81	11.9500	165.6600	154	4.6500	158.6400
82	11.8500	165.4600	155	4.5500	138.3800
83	11.7500	166.6200	156	4.4500	140.9200
84	11.6500	165.7900	157	4.3500	134.8600
85	11.5500	168.6200	158	4.2500	164.4100
86 87	11.4500 11.3500	165.3800 166.0300	159 160	4.1500 4.0500	108.7100 131.6400
88	11.2500	159.5200	160	3.9500	134.3400
89	11.1500	155.6100	162	3.8500	108.8400
90	11.0500	158.7500	163	3.7500	115.1300
91	10.9500	160.0500	164	3.6500	69.52400
92	10.8500	162.9100	165	3.5500	111.2700
93	10.7500	159.0000	166	3.4500	119.0600
94	10.6500	155.5100	167	3.3500	113.8700
95	10.5500	154.6000	168	3.2500	118.0200
96	10.4500	154.7600	169	3.1500	131.5000
97	10.3500	164.6700	170	3.0500	120.2000
98	10.2500	163.3600	171	2.9500	98.84500
99	10.1500	168.6300 D	172	2.8500	135.0400
100	10.0500	166.2100	173	2.7500	106.9100
101 102	9.9500 9.8500	164.4900 164.0600	174	2.6500 2.5500	115.6700
102	9.8500	161.9600	175	2.4500	131.1900 118.9200
103	9.6500	156.1000	170	2.4500	102.8200
105	9.5500	164.4100	178	evie 2.2500	105.4900
106	9.4500	169.8200	179	2.1500	106.9200
107	9.3500	166.2100	180	2.0500	95.21800
108	9.2500	150.6900	181	1.9500	129.4000
109	9.1500	153.8800 STM E722	-94 182	02) 1.8500	129.2100
110	9.0500	174.5800	183	1.7500	78.34200
- 1-		alog/standar177.5700 / 0b46830-	101	110000	le8c/astm-e163.0200-2002
112	8.8500	160.2200	185	1.5500	105.9800
113	8.7500	146.7500	186	1.4500	98.97900
114	8.6500	163.8600	187	1.3500	88.76000
115 116	8.5500 8.4500	165.8300 166.6100	188 189	1.2500 1.1500	88.99400 62.67300
117	8.3500	162.0200	189	1.0500	75.69200
118	8.2500	158.4200	191	0.98000	111.7900
119	8.1500	154.4300	192	0.94000	111.4900
120	8.0500	165.0000	193	0.90000	87.78100
121	7.9500	186.4000	194	0.86000	78.33600
122	7.8500	175.3400	195	0.82000	136.8000
123	7.7500	174.8000	196	0.78000	87.94400
124	7.6500	170.3100	197	0.74000	64.57500
125	7.5500	162.9100	198	0.70500	59.30200
126	7.4500	167.0500	199	0.67500	56.76700
127	7.3500	168.4300	200	0.64500	55.29000
128	7.2500	169.2700	201	0.61500	52.61800
129 130	7.1500	139.1600 161.1000	202 203	0.58750	58.33400 124 5500
130 131	7.0500 6.9500	161.1000	203 204	0.56250 0.53750	124.5500 77.95800
131	6.8500	146.8900	204	0.51250	57.41600
132	6.7500	162.2500	205	0.48750	55.40500
134	6.6500	150.9200	200	0.46250	53.50800
135	6.5500	119.2700	208	0.43750	52.65400
136	6.4500	139.2700	209	0.41250	51.89700
137	6.3500	150.0900	210	0.39000	52.10700
138	6.2500	175.3800	211	0.37000	49.72200
139	6.1500	127.7100	212	0.35000	50.09500
140	6.0500	153.0000	213	0.33000	49.28000
	E 0E00	137.1000	214	0.31000	50.23700
141 142	5.9500 5.8500	164.7000	214 215	0.29000	51.32600