INTERNATIONAL STANDARD

ISO 12749-6

First edition 2020-11

Nuclear energy, nuclear technologies, and radiological protection — Vocabulary —

Part 6: **Nuclear medicine**

Énergie nucléaire, technologies nucléaires et protection radiologique — Vocabulaire —

Partie 6: Médecine nucléaire

Document Preview

ISO 12749-6:2020

https://standards.iteh.ai/catalog/standards/iso/5cc14f61-bc0d-48e3-a47d-492fefe3c682/iso-12749-6-2020

iTeh Standards (https://standards.iteh.ai) Document Preview

ISO 12749-6:2020

https://standards.iteh.ai/catalog/standards/iso/5cc14f61-bc0d-48e3-a47d-492fefe3c682/iso-12749-6-2020

COPYRIGHT PROTECTED DOCUMENT

© ISO 2020

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Foreword			Page
			iv
Intro	ductio	n	v
1	Scop	e	1
2	Norr	native references	1
3	Terms and definitions		1
	3.1	Basic terms related to nuclear medicine	1
	3.2	Terms related to diagnostic nuclear medicine	2
	3.3	Terms related to the aneutic nuclear medicine	3
	3.4	Terms related to radiopharmacy	4
	3.5	Terms related to medical equipment	5
	3.6	Terms related to medical equipment Terms related to medical studies	6
Anne	ex A (in	formative) Methodology used in the development of the vocabulary	8
Bibliography			16
Index			17

iTeh Standards (https://standards.iteh.ai) Document Preview

ISO 12749-6:2020

https://standards.iteh.ai/catalog/standards/iso/5cc14f61-bc0d-48e3-a4/d-492fefe3c682/iso-12/49-6-2020

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 85, *Nuclear energy, nuclear technologies, and radiological protection*.

A list of all parts in the ISO 12749 series can be found on the ISO website.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.

Introduction

This document provides terms and definitions for nuclear medicine, the medical discipline whereby radionuclides as unsealed sources are administered to patients, in order to carry out diagnostic exams, therapeutic treatments for various pathologies and to monitor the evolution of the disease.

This multidisciplinary activity is fundamentally made up of medical, radiopharmaceutical and medical physics components, although it also relies on nuclear science, biology, biochemistry, radiochemistry, nuclear chemistry, electronics, electro-mechanics, computing, metrology of ionizing radiation and dosimetry. It involves tasks relating to support, research and development as well as staff training, which are all carried out intensively in this field.

The specific areas of most relevance to nuclear medicine are oncology, cardiology, endocrinology and neurology. However, its reaches practically every medical specialty.

The professional and technical staff who work in nuclear medicine are highly specialized, carrying out their activities in highly complex facilities, using a large range of equipment, within a strict healthcare and radiological regulatory setting.

These activities produce a large amount of documentation such as reports, publications, legal documents and teaching texts, all of which require the use of precise, coherent and unambiguous terms and definitions. Therefore, it becomes essential to harmonize the terminology used by all of the abovementioned sectors and professions.

Conceptual arrangement of terms and definitions is based on concepts systems that show corresponding relationships among nuclear medicine concepts. Such arrangement provides users with a structured view of the nuclear medicine sector and will facilitate common understanding of all related concepts, see also Annex A. Besides, concept systems and conceptual arrangement of terminological data will be helpful to any kind of user because it will promote clear, accurate and useful communication.

ISO 12749-6:2020

https://standards.iteh.ai/catalog/standards/iso/5cc14f61-bc0d-48e3-a47d-492fefe3c682/iso-12749-6-2020

iTeh Standards (https://standards.iteh.ai) Document Preview

ISO 12749-6:2020

https://standards.jteh.aj/catalog/standards/jso/5cc14f61-bc0d-48e3-a47d-492fefe3c682/jso-12749-6-2020

Nuclear energy, nuclear technologies, and radiological protection — Vocabulary —

Part 6:

Nuclear medicine

1 Scope

This document contains the terms, definitions, notes to entry and examples corresponding to the frequently used concepts which apply to diagnostic and therapeutic nuclear medicine.

It comprises the minimum essential information for each nuclear medicine concept represented by a single term. It provides the reader with the information required to approach this multidisciplinary speciality, such as medical, radiopharmacy and medical physics point of view. It is intended to facilitate communication and promote common understanding.

2 Normative references

There are no normative references in this document.

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- https://www.iso.org/obp efe3e682/iso-12749-6-2020
 - IEC Electropedia: available at http://www.electropedia.org/

3.1 Basic terms related to nuclear medicine

3.1.1

nuclear medicine

field of medicine in which unsealed radioactive sources, namely radiopharmaceuticals (3.4.3), are used for diagnosis or therapy

3.1.1.1

diagnostic nuclear medicine

scientific and clinical discipline in which radiopharmaceuticals, administered by different routes, are used for diagnostic purposes

Note 1 to entry: Diagnostic nuclear medicine is mainly carried out through imaging but may also be measurements of the global or regional function of an organ.

Note 2 to entry: Diagnostic nuclear medicine also includes quantitative imaging and patient monitoring for the follow-up of both the disease progression and the treatment response.

3112

therapeutic nuclear medicine

scientific and clinical discipline in which radiopharmaceuticals are administered for therapeutic purposes

3.1.2

theranostics

theragnostics

treatment strategy based on personalized medicine, which allows selecting the most appropriate therapy according to the diagnostic images

Note 1 to entry: In nuclear medicine, the specific targeted diagnostic test and therapy can be made sequentially with the same radiolabelled molecule (i.e. radiopharmaceutical) or with the same molecule and different label radionuclides or with different molecules with similar physiological properties.

EXAMPLE Personalized treatment of a patient with a positive somatostatin receptor image (neuroendocrine tumour) by a radiopharmaceutical composed of somatostatin analogs peptide labelled with an emitter suitable for molecular radiotherapy.

3.1.3

radiopharmacy

branch of pharmacy, that deals with the preparation, characterization and quality of radioactive drugs in nuclear medicine procedures

EXAMPLE The final stage or the preparation of the pharmaceutical and/or activity dispensing is carried out from commercial products in a hospital radiopharmacy or in centralized radiopharmacies and then delivered to a hospital radiopharmacy.

3.1.4

administered activity

activity (in MBq) of radiopharmaceutical that has been administred to the patient for diagnostic or therapeutic purposes

3.1.5

uptake

accumulation of administered activity to a particular organ or tissue at a particular time after administration

[SOURCE: NATIONAL COUNCIL ON RADIATION PROTECTION AND MEASUREMENTS. NCRP Composite Glossary. NCRP, Bethesda, 2011] <u>ISO 12749-6:2020</u>

https://standards.iteh.ai/catalog/standards/iso/5cc14f61-bc0d-48e3-a47d-492fefe3c682/iso-12749-6-2020

3.2 Terms related to diagnostic nuclear medicine

3.2.1

diagnostic nuclear medicine

(See <u>3.1.1.1</u>)

3.2.2

nuclear medicine imaging

imaging performed after administration of a radiopharmaceutical

Note 1 to entry: Imaging is considered a non-invasive diagnostic technique, as opposed to a biopsy or exploratory surgery.

Note 2 to entry: PET and SPECT are the main type of nuclear medicine imaging, providing information about how certain tissues and organs are functioning. It is complementary to anatomical imaging, such as X-ray imaging.

3.2.3

molecular imaging

ΜI

imaging allowing the visualization, characterization, and measurement of biological processes at the molecular and cellular levels in humans and other living systems

Note 1 to entry: *Nuclear medicine imaging* (3.2.2) is one of the modalities of molecular imaging.

[SOURCE: Mankoff DA. A definition of molecular imaging. J. Nucl. Med. 2007 Jun;48(6):18N, 21N, modified.]

3.2.4

quantitative imaging

extraction and use of numerical/statistical features from medical images

Note 1 to entry: The chief method used in quantitative imaging is to delineate a region of interest on the image and determine the mean uptake in this region, but many other features can be extracted.

[SOURCE: Abramson RG, Burton KR, Yu JP, et al. Methods and challenges in quantitative imaging biomarker development. Academic Radiology 2015 Jan, 22(1):25-32].

3.2.5

diagnostic reference level

DRL

level used in medical imaging to indicate whether, in routine conditions, the activity of a radiopharmaceutical administered in a specified radiological procedure is unusually high or unusually low for that procedure

Note 1 to entry: In diagnostic nuclear medicine, DRL is a level of activity for typical examinations for groups of standardized patients.

[SOURCE: IAEA SAFETY STANDARDS SERIES No. GSR Part 3 (2014), modified.]

3.2.6

standard uptake value

SUV

value equal to the radio of the image derived radioactivity concentration (in kBq/ml) to the whole body concentration (in kBq/kg)

Note 1 to entry: Mainly used in PET imaging, but also in SPECT imaging.

Note 2 to entry: There are other definitions of the SUV when substituting the body weight with the lean body weight or the body surface area. In addition, from a region of interest, several SUV values can be extracted (such as the maximum, the mean SUV-value, etc.).

3.3 Terms related to therapeutic nuclear medicine

3.3.1

therapeutic nuclear medicine

(See 3.1.1.2)

3.3.2

radiotherapy

radiation therapy

therapy that uses ionizing radiation to kill cells and shrink pathological tissues

Note 1 to entry: Radiation may be delivered by a machine outside the body (external-beam radiation therapy), or it may come from radioactive material placed in the body near cancer cells (brachytherapy) or from radiopharmaceutical administered to the patient (molecular radiotherapy).

3.3.3

molecular radiotherapy

radiation therapy that uses a radiopharmaceutical to kill pathological cells and tissues by the effect of ionizing radiation

3.3.3.1

metabolic radiotherapy

molecular radiotherapy using selective irradiation of a target zone by a radiopharmaceutical administered to the patient and that participates in the metabolism of tumour cells

EXAMPLE The most widely used form of molecular radiotherapy is for the treatment of thyroid pathologies (thyroid cancer and hyperthyroidism). Called radioiodine therapy, this treatment consists of an oral administration of iodine-131, which will primarily concentrate in the thyroid to kill diseased cells.

3.3.3.2

radioimmunotherapy

RIT

molecular radiotherapy based on a personalized cancer treatment that combines radiation therapy with the precise targeting ability of immunotherapy

Note 1 to entry: In immunotherapy, scientists create monoclonal antibodies in a laboratory that mimic cellular activity in the body's immune system and are designed to recognize and bind to the antigen of a specific cancer cell.

Note 2 to entry: In RIT, the monoclonal antibody is paired with a radioactive material. When injected into the patient's bloodstream, the antibody travels to and binds to the cancer cells, allowing a high dose of radiation to be delivered to the tumour.

Note 3 to entry: The antibodies are designed to attach only very specific types of cells, consequently, radioimmunotherapy maximizes the radiation that can be delivered to the diseased tissue and minimizes the amount of radiation to which healthy tissue is exposed.

[SOURCE: Glossary of Molecular Imaging Terms, web SNMMI, 2017, modified.]

3.3.3.3

peptide receptor radionuclide therapy

molecular radiotherapy that is targeted towards peptide receptors

Note 1 to entry: The peptide receptor radionuclide therapy is used to overexpress peptide receptors in the treatment of neuroendocrine tumours.

3.3.4

selective internal radiotherapy

SIRT

radioembolization

cancer treatment that uses radioactive glass or resin beads, called microspheres, which are injected in the tumour blood supply

Note 1 to entry: The selective internal radiation therapy is mainly used for treatment of liver tumours.

ISO 12749-6:2020

3.4 p Terms related to radiopharmacy iso/5cc14f61-bc0d-48e3-a47d-492fefe3c682/iso-12749-6-2020

3.4.1

radiopharmacy

(See 3.1.2)

3.4.2

tracer

chemical compound used to trace the course of a biological process

3.4.2.1

radiotracer

tracer labelled by a radionuclide

3.4.3

radiopharmaceutical

radioactive drug used for diagnostic or therapeutic purposes

Note 1 to entry: The radiopharmaceutical has two components: a radioactive part (radionuclide) that defines the physical parameters such as physical half-life and type of radiation for the medical procedure, and non-radioactive part (tracer, chemical and/or biological part) that defines the biological parameters such as biological half-life and specificity.

3.4.4

radiochemical purity

percentage of activity of a radionuclide in the specified chemical form in relation to the total activity of the sample