

SLOVENSKI STANDARD SIST EN IEC 61820-3-4:2023

01-september-2023

Električne inštalacije za razsvetljavo in radijske javljalnike na letališčih - 3-4. del: Sekundarni varnostni tokokrogi v seriji vezij - Splošne varnostne zahteve (IEC 61820-3-4:2023)

Electrical installations for lighting and beaconing of aerodromes - Part 3-4: Safety secondary circuits in series circuits - General safety requirements (IEC 61820-3-4:2023)

Elektrische Anlagen für Beleuchtung und Befeuerung von Flugplätzen -Sicherheitssekundärkreise in Serienschaltung – Allgemeine Sicherheitsanforderungen (IEC 61820-3-4:2023)

<u>SIST EN IEC 61820-3-4:2023</u>

Installations électriques pour l'éclairage et le balisage des aérodromes - Circuits secondaires de sécurité dans des circuits série - Exigences générales de sécurité (IEC 61820-3-4:2023)

Ta slovenski standard je istoveten z: EN l

EN IEC 61820-3-4:2023

ICS:

<u>100.</u>		
29.140.50	Instalacijski sistemi za razsvetljavo	Lighting installation systems
49.100	Oprema za servis in vzdrževanje na tleh	Ground service and maintenance equipment
93.120	Gradnja letališč	Construction of airports

SIST EN IEC 61820-3-4:2023

en

SIST EN IEC 61820-3-4:2023

iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST EN IEC 61820-3-4:2023 https://standards.iteh.ai/catalog/standards/sist/89282d1e-6ed9-45f7-a1feec79576b1179/sist-en-iec-61820-3-4-2023

EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM

EN IEC 61820-3-4

June 2023

ICS 29.140.50; 93.120

English Version

Electrical installations for lighting and beaconing of aerodromes -Part 3-4: Safety secondary circuits in series circuits - General safety requirements (IEC 61820-3-4:2023)

Installations électriques pour l'éclairage et le balisage des aérodromes - Partie 3-4: Circuits secondaires de sécurité dans les circuits série - Exigences générales de sécurité (IEC 61820-3-4:2023) Elektrische Anlagen für Beleuchtung und Befeuerung von Flugplätzen - Teil 3-4: Sicherheitssekundärkreise in Serienschaltung - Allgemeine Sicherheitsanforderungen (IEC 61820-3-4:2023)

This European Standard was approved by CENELEC on 2023-06-15. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.

Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CENELEC member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Türkiye and the United Kingdom.

European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

EN IEC 61820-3-4:2023 (E)

European foreword

The text of document 97/253/FDIS, future edition 1 of IEC 61820-3-4, prepared by IEC/TC 97 "Electrical installations for lighting and beaconing of aerodromes" was submitted to the IEC-CENELEC parallel vote and approved by CENELEC as EN IEC 61820-3-4:2023.

The following dates are fixed:

- latest date by which the document has to be implemented at national (dop) 2024-03-15 level by publication of an identical national standard or by endorsement
- latest date by which the national standards conflicting with the (dow) 2026-06-15 document have to be withdrawn

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CENELEC shall not be held responsible for identifying any or all such patent rights.

Any feedback and questions on this document should be directed to the users' national committee. A complete listing of these bodies can be found on the CENELEC website.

Teh STA Endorsement notice

The text of the International Standard IEC 61820-3-4:2023 was approved by CENELEC as a European Standard without any modification.

In the official version, for Bibliography, the following notes have to be added for the standard indicated:

IEC 60364-1:2005 NOTE Approved as HD 60364-1:2008 +A11:2017

IEC 61558-1:2017 NOTE Approved as EN IEC 61558-1:2019 (not modified)

IEC 61558-2-4:2021 NOTE Approved as EN IEC 61558-2-4:2021 (not modified)¹

IEC 61820-1 NOTE Approved as EN IEC 61820-1

¹ Under preparation. Stage at the time of publication: FprEN IEC 61558-2-4:2021.

Annex ZA (normative)

Normative references to international publications with their corresponding European publications

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

NOTE 1 Where an International Publication has been modified by common modifications, indicated by (mod), the relevant EN/HD applies.

NOTE 2 Up-to-date information on the latest versions of the European Standards listed in this annex is available here: <u>www.cencenelec.eu</u>.

Publication	Year	Title	<u>EN/HD</u>	<u>Year</u>
IEC 60364-4-41	2005	Low-voltage electrical installations - Part 4- 41: Protection for safety - Protection against electric shock	HD 60364-4-41	2017
-	iTeh		+ A11	2017
-	-		+ A12	2019
IEC 60417	-	Graphical symbols for use on equipment	-	-
IEC 60529	1989	Degrees of protection provided by enclosures (IP Code)	EN 60529	1991
- https://	//standard		+ corrigendum May	1993
+ A1	1999		+ A1	2000
+ A2	2013		+ A2	2013
IEC 61000-6-2	2016	Electromagnetic compatibility (EMC) - Part 6-2: Generic standards - Immunity standard for industrial environments	EN IEC 61000-6-2	2019
IEC 61000-6-4	2018	Electromagnetic compatibility (EMC) - Part 6-4: Generic standards - Emission standard for industrial environments	EN IEC 61000-6-4	2019
IEC 61140	2016	Protection against electric shock - Common aspects for installation and equipment	EN 61140	2016
IEC 61558-2-6	2021	Safety of transformers, reactors, power supply units and combinations thereof - Part 2-6: Particular requirements and tests for safety isolating transformers and power supply units incorporating safety isolating transformers for general applications	EN IEC 61558-2-6 ²	2021

² Under preparation. Stage at the time of publication: FprEN IEC 61558-2-6:2021.

SIST EN IEC 61820-3-4:2023

EN IEC 61820-3-4:2023 (E)

IEC 61820-1	2019	Electrical installations for aeronautical ground lighting at aerodromes - Part 1: Fundamental principles	EN IEC 61820-1	2019
IEC 61821	2011	Electrical installations for lighting and beaconing of aerodromes - Maintenance o aeronautical ground lighting constant current series circuits	EN 61821 f	2011
IEC 61822	2009	Electrical installations for lighting and beaconing of aerodromes - Constant current regulators	EN 61822	2009
IEC 61823	2002	Electrical installations for lighting and beaconing of aerodromes - AGL series transformers	EN 61823	2003
IEC 63067	2020	Electrical installations for lighting and beaconing of aerodromes - Connecting devices - General requirements and tests	EN IEC 63067	2020
CISPR 11	2015	Industrial, scientific and medical equipmen - Radio-frequency disturbance characteristics - Limits and methods of measurement	tEN 55011	2016
+ A1	2016		+ A1	2017
-	-		+ A11	2020
+ A2	2019		+ A2	2021
CISPR 32	2015	Electromagnetic compatibility of multimedia equipment - Emission requirements	aEN 55032	2015
-	-		+ A11	2020

https://standards.iteh.ai/catalog/standards/sist/89282d1e-6ed9-45f7-a1feec79576b1179/sist-en-iec-61820-3-4-2023

Edition 1.0 2023-05

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Electrical installations for lighting and beaconing of aerodromes – Part 3-4: Safety secondary circuits in series circuits – General safety requirements

Installations électriques pour l'éclairage et le balisage des aérodromes – Partie 3-4: Circuits secondaires de sécurité dans les circuits série – Exigences générales de sécurité ^{27957661179/sist-en-lec-61820-3-4-2023}

INTERNATIONAL ELECTROTECHNICAL COMMISSION

COMMISSION ELECTROTECHNIQUE INTERNATIONALE

ICS 29.140.50; 93.120

ISBN 978-2-8322-7017-2

Warning! Make sure that you obtained this publication from an authorized distributor. Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé.

 Registered trademark of the International Electrotechnical Commission Marque déposée de la Commission Electrotechnique Internationale

CONTENTS

FOREWORD				
IN	INTRODUCTION			
1	Scop	e	8	
2	Norm	ative references	8	
3	Term	s. definitions. and abbreviated terms	9	
•	3 1	Terms and definitions	<u>م</u>	
	3.2	Abbreviated terms	3	
4	Requ	irements for the SELV/PELV supply	12	
т	1 1	General	12	
	4.1	SELV/PELV sofety domargation line in an AGL sories sirguit	12	
	4.2	Environmental conditions	. IZ	
	4.5	Degree of protection provided by enclosures	. 14 1/	
	4.4	Electromagnetic compatibility (EMC)	. 14 1/	
	4.5	Limite of electromagnetic emission	. 14 17	
	4.5.1		. 14 1/	
	4.5.2	Marking	. 14 1/	
	4.0	Marking of the SELV/PELV power supply (single unit: safety transformer	. 14	
	4.0.1	combined with a limiter)	.14	
	4.6.2	Marking of the SELV/PELV power supply (multiple units: safety		
		transformer in series with a separate limiter)	. 15	
	4.6.3	Marking at the installation locations	. 15	
	4.7	Protection against electric shock	. 15	
	4.7.1	Basic requirements	. 15	
	4.7.2	http Protective measure to be applied	. 15	
	4.7.3	Voltage limit for the SELV/PELV circuit.	. 15	
	4.7.4	Protective separation from the primary series circuit	.17	
	4.7.5	Assemblies in the SELV/PELV supply	.18	
	4.8	Interfaces	. 18	
	4.8.1	Supply unit	. 18	
	4.8.2	Connectors	. 18	
5	Usefu	Il methodic for a SELV/PELV series circuit configuration	.18	
	5.1	General	. 18	
	5.2	Method: systemic approach	.19	
	5.3	Method: extended systemic approach (with limiter)	.19	
	5.4	Verification of the chosen method	.19	
6	Testi	ng	. 19	
	6.1	General	. 19	
	6.2	System design test	. 20	
	6.2.1	General	. 20	
	6.2.2	Test for the "systemic approach" method	.20	
	6.2.3	Test for "extended systemic approach" method (device type test)	.21	
	6.3	Production routine tests	.23	
	6.3.1	Transformer test	.23	
	6.3.2	Limiter test	. 23	
	6.4	Field test	. 23	
	6.4.1	Field test without additional limiter	.23	
	6.4.2	Field test with additional limiter	.24	

IEC 61820-3-4:2023 © IEC 2023 - 3 -

Annex A (ii	nformative) System design selection	26
Annex B (ir	nformative) Marking and hazard risk information	27
B.1 I	Examples for marking	27
B.2 I	Hazard risk information	29
B.3 I	Measurement information	
B.3.1	Open running safety transformer	
B.3.2	65 VA safety transformer unloaded in a real series circuit	31
B.3.3	100 VA safety transformer unloaded with a quasi-sinewave primary	
	current	32
Annex C (i	nformative) Additional information	33
C.1 [Determination of the peak voltage for SELV/PELV applications	
C.1.1	Standards used	
C.1.2	Reason for using	
C.2 (Case I sinusoidal voltage (SELV, PELV)	
C.3 (Case II current pulses	
Bibliograph	ıy	45

Figure 1 – Safety demarcation line in a safety extra low voltage system (SELV system)	13
Figure 2 – Safety demarcation line in a protective extra-low voltage system (PELV system)	.13
Figure 3 – Short-term non-recurring AC touch voltage limit	16
Figure 4 – Short-term recurring peak touch voltage limit	17
Figure 5 – Test setup for type tests without limiter	21
Figure 6 – Test setup for type tests with limiter 1920-9-4-2029	22
Figure 7 – Test setup for field tests without limiter	24
Figure 8 – Test setup for field tests with limiter	25
Figure B.1 – Example for marking (luminaire, bolt, cable)	27
Figure B.2 – Example for marking tags	27
Figure B.3 – Example for field marking (elevated luminaires)	28
Figure B.4 – Example for field marking (inset luminaires)	28
Figure B.5 – Example for field marking (cables)	29
Figure B.6 – Example for field marking (CCRs)	29
Figure B.7 – Current time effect diagram for alternating current 15 Hz to 100 Hz (for ventricular fibrillation current pathway left hand to both feet)	.30
Figure B.8 – Principle voltage shape of an open running safety transformer (output voltage)	31
Figure B.9 – Voltage shape measured in a real circuit at an open running 65 W- transformer with a series circuit voltage of 384 V AC RMS and series current of 4,1 A	.31
Figure B.10 – Voltage shape on the output of an unloaded safety transformer; measured secondary voltage of 47,49 V AC RMS and a peak-to-peak voltage of 265 V	.32
Figure C.1 – Conventional time/current zones of effects of AC currents (15 Hz to 100 Hz) on persons for a current path corresponding to left hand to feet (see	25
Figure C.2. Probability of fibrillation ricks for current flowing in the path left hand to fact	20
Figure C.3 Extracted data from IEC 60470 2:2010 Figure 23	30
Figure C.4 – Modified IEC 60479-2:2019, Figure 23	10
Figure $0.4 - $ modified 120 00473-2.2013, Figure 23	-+U // 1
rigure 0.0 – reak voltage vs peak impulse duration	-+ 1

Figure C.6 – Peak voltage vs peak impulse duration with permissible (rectangular) pulses	42
Figure C.7 – Open secondary voltage peak	42
Figure C.8 – Example – t _{erp} vs t _{max} comparison	44
Table A.1 – Comparison of characteristics of PELV and SELV	26
Table C.1 – Total body impedances Z_{T} for a current path hand to hand for small	
surface areas of contact in dry conditions at touch voltages $U_{\sf T}$ = 25 V to 200 V AC	
50/60 Hz (values rounded to 25 Ω)	34

Table C.2 – Time/current zones for AC 15 Hz to 100 Hz for hand to feet pathway –Summary of zones of Figure C.1	35
Table C.3 – Heart-current factor F for different current paths	36
Table C.4 – Estimate for ventricular fibrillation threshold after each pulse of current in a series of pulses each of which excited the heart tissue in such a manner as to trigger ventricular responses	39

iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST EN IEC 61820-3-4:2023 https://standards.iteh.ai/catalog/standards/sist/89282d1e-6ed9-45f7-a1feec79576b1179/sist-en-iec-61820-3-4-2023 IEC 61820-3-4:2023 © IEC 2023

- 5 -

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ELECTRICAL INSTALLATIONS FOR LIGHTING AND BEACONING OF AERODROMES –

Part 3-4: Safety secondary circuits in series circuits – General safety requirements

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

IEC 61820-3-4 has been prepared by IEC technical committee 97: Electrical installations for lighting and beaconing of aerodromes. It is an International Standard.

The text of this International Standard is based on the following documents:

Draft	Report on voting
97/253/FDIS	97/256/RVD

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this International Standard is English.

- 6 -

IEC 61820-3-4:2023 © IEC 2023

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/publications.

A list of all parts in the IEC 61820 series, published under the general title *Electrical installations for lighting and beaconing of aerodromes*, can be found on the IEC website.

Future documents in this series will carry the new general title as cited above. Titles of existing documents in this series will be updated at the time of the next edition.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

IMPORTANT – The "colour inside" logo on the cover page of this document indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

SIST EN IEC 61820-3-4:2023 https://standards.iteh.ai/catalog/standards/sist/89282d1e-6ed9-45f7-a1feec79576b1179/sist-en-iec-61820-3-4-2023 IEC 61820-3-4:2023 © IEC 2023

- 7 -

INTRODUCTION

With a few exceptions, aeronautical ground lighting is designed for series circuit technology operating with a constant current and a maximum input voltage of 5 000 V AC RMS, including tolerances. The input voltage to the series circuit is constantly adjusted by the constant current regulator to maintain the series circuit current irrespective of the variations in the load. The properties and characteristics of the constant current regulators are provided in IEC 61822. Due to the structure of the series circuit, i.e., a series connection of all loads, the usual protective devices for personnel protection of an IT, TT or TN network cannot be applied.

Aeronautical ground lighting is defined as any light provided as an aid to air navigation and as such is subject to specific requirements with respect to its resilience, availability, and serviceability levels. Therefore, insulation faults in the series circuit are often tolerated, and do not lead to the automatic disconnection of the electrical supply to the series circuit.

In view of the above, IEC 61821 states that no work of any kind is normally permitted on live series circuits without first conducting a suitable and sufficient risk assessment and using appropriate protective equipment according to IEC 61821.

The electrical characteristics of the constant current series circuits are often confused with those of IT, TT or TN networks, i.e., constant input voltage, equipment connected in parallel, and a load-dependent current. In practice, it is not always easy to assign rated voltages correctly to individual components of the series circuit or to determine possible touch voltages. In a constant current series circuit, the rated voltage of the equipment in the series circuit and the maximum touch voltage frequently exceed the normal mains input voltage.

In a series circuit installation, the series circuit input voltage is divided in proportion to the internal resistances of the various loads. The rated voltage, i.e., the voltage between the input lines of the equipment, is defined by the series circuit current that flows through the equipment and its input impedance. Since input impedance depends on the equipment design and the series circuit current is constant, the input voltage remains the same for each item of equipment. As a result of the provision of current control in the series circuit, the series circuit input voltage is load-dependent and corresponds to the sum of all partial voltages in the series circuit.

This is different to determining the maximum possible touch voltage to earth in a series circuit. Since one or more earth faults of varying resistance to earth may be present, the touch voltage to earth may assume any value up to the maximum series circuit input voltage depending on the location of the earth fault and the equipment installed in the series circuit. Therefore, when determining the dielectric strength against earth potential, it is usual to take the maximum series circuit input voltage. Such peculiarities of the series circuit have been considered in the requirements for lamp systems in this document.

Since there are only a few effective safety features available for personnel protection in series circuit technology, the protective measure "safety extra low voltage (SELV)" and "protective extra low voltage (PELV)" is applied in this document for the supply of lamp systems. This measure is common practice and can resort to the application of well-known and accepted methodology. The introduction of SELV/PELV in this type of application has been made possible by the introduction of new illumination technology that has lower power requirements and hence requires a lower voltage supply.

NOTE This document is based on SELV specification according to IEC 60364-4-41 and IEC 61558-1.

- 8 -

IEC 61820-3-4:2023 © IEC 2023

ELECTRICAL INSTALLATIONS FOR LIGHTING AND BEACONING OF AERODROMES –

Part 3-4: Safety secondary circuits in series circuits – General safety requirements

1 Scope

This part of IEC 61820 specifies protective provisions for the operation of lamp systems powered by series circuits in aeronautical ground lighting.

The protective provisions described here refer only to secondary supply systems for loads that are electrically separated from the series circuit.

This document specifies the level of SELV, and alternatively PELV, under consideration of additional personnel protection during work on live secondary circuits by electrically skilled persons. This document also covers the special operational features of aeronautical ground lighting and addresses the level of training and the requirements for maintenance procedures detailed in IEC 61821 and other national or regional regulation.

The requirements and tests are intended to set a specification framework for system designers, system installers, users, and maintenance personnel to ensure a safe and economic use of electrical systems in installations for the beaconing of aerodromes.

This document complements existing IEC aeronautical ground lighting (AGL) standards and can be used as a design specification.

c79576b1179/sist-en_iec_61820-3-4-2023

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60364-4-41:2005, Low-voltage electrical installations – Part 4-41: Protection for safety – Protection against electric shock

IEC 60417, *Graphical symbols for use on equipment,* available at http://www.graphicalsymbols.info/equipment

IEC 60529:1989, Degrees of protection provided by enclosures (IP Code) IEC 60529:1989/AMD1:1999 IEC 60529:1989/AMD2:2013

IEC 61000-6-2:2016, Electromagnetic compatibility (EMC) – Part 6-2: Generic standards – Immunity for industrial environments

IEC 61000-6-4:2018, Electromagnetic compatibility (EMC) – Part 6-4: Generic standards – Emission standard for industrial environments

IEC 61140:2016, Protection against electric shock – Common aspects for installation and equipment

IEC 61820-3-4:2023 © IEC 2023 - 9 -

IEC 61558-2-6:2021, Safety of transformers, reactors, power supply units and combinations thereof – Part 2-6: Particular requirements and tests for safety isolating transformers and power supply units incorporating safety isolating transformers for general applications

IEC 61820-1:2019, Electrical installations for aeronautical ground lighting at aerodromes – Part 1: Fundamental principles

IEC 61821:2011, Electrical installations for lighting and beaconing of aerodromes – Maintenance of aeronautical ground lighting constant current series circuits

IEC 61822:2009, *Electrical installations for lighting and beaconing of aerodromes – Constant current regulators*

IEC 61823:2002, *Electrical installations for lighting and beaconing of aerodromes – AGL series transformers*

IEC 63067:2020, *Electrical installations for lighting and beaconing of aerodromes – Connecting devices – General requirements and tests*

CISPR 11:2015, Industrial, scientific, and medical equipment – Radio-frequency disturbance characteristics – Limits and methods of measurement CISPR 11:2015/AMD1:2016 CISPR 11:2015/AMD2:2019

CISPR 32:2015, Electromagnetic compatibility of multimedia equipment – Emission requirements

3 Terms, definitions, and abbreviated terms

3.1 Terms and definitions

ec/9576b1179/sist-en-iec-61820-3-4-2023

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminology databases for use in standardization at the following addresses:

- IEC Electropedia: available at https://www.electropedia.org/
- ISO Online browsing platform: available at https://www.iso.org/obp

3.1.1

assembly

self-contained, closed functional unit forming a light system together with other assemblies

3.1.2

basic insulation

insulation of hazardous live parts providing basic protection

Note 1 to entry: This concept does not apply to insulation used exclusively for functional purposes.

[SOURCE: IEC 60050-581:2008, 581-21-24]

3.1.3

electrically skilled person

person with relevant education and experience to enable that person to perceive risks and to avoid hazards which electricity can create

[SOURCE: IEC 60050-195:2021,195-04-01]