INTERNATIONAL STANDARD

ISO 4524-3

Second edition 2021-10

Metallic coatings — Test methods for electrodeposited gold and gold alloy coatings —

Part 3: **Electrographic tests for porosity**

Revêtements métalliques — Méthodes d'essai des dépôts électrolytiques d'or et d'alliages d'or —

Partie 3: Détermination électrographique de la porosité

Document Preview

ISO 4524-3:2021

https://standards.iteh.ai/catalog/standards/iso/68094e3a-f216-48ee-9f65-91103e49573f/iso-4524-3-202

iTeh Standards (https://standards.iteh.ai) Document Preview

ISO 4524-3:2021

https://standards.iteh.ai/catalog/standards/iso/68094e3a-f216-48ee-9f65-91103e49573f/iso-4524-3-2021

COPYRIGHT PROTECTED DOCUMENT

© ISO 2021

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Cont	tents	Page
Forew	ord	iv
1	Scope	1
2	Normative references	1
3	Terms and definitions	1
4	Nioxime paper test 4.1 Applicability 4.2 Materials 4.2.1 General 4.2.2 Nioxime paper 4.2.3 Moistened blotting paper 4.3 Procedure	1 1 1
5	Dye-transfer paper test 1 5.1 Applicability 5.2 Materials 5.2.1 General 5.2.2 Dye-transfer paper	2 2 2 2 2
	5.3 Procedure	2
6	Dye-transfer paper test 2	
7	Flectrographic gelatine film test 7.1 Principle 7.2 Reagents 7.2.1 Gelatine 7.2.2 Electrolyte solution 7.2.3 Dimethylglyoxime, indicator solution	3 3 3 3 3
	7.3 Testing solution 7.4 Apparatus 7.5 Procedure 7.5.1 Electrolytic process 7.5.2 Drying 7.5.3 Evaluation 7.6 Expression of results	4 3-2021 4 4 4
8	Test report	

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 107, *Metallic and other inorganic coatings*, Subcommittee SC 3, *Electrodeposited coatings and related finishes*, in collaboration with the European Committee for Standardization (CEN) Technical Committee CEN/TC 262, *Metallic and other inorganic coatings*, in accordance with the Agreement on technical cooperation between ISO and CEN (Vienna Agreement).

This second edition cancels and replaces the first edition (ISO 4524-3:1985), which has been technically revised

The main change compared to the previous edition is as follows: due to currently strong restrictions on the use of cadmium, the cadmium sulphide paper test prescribed by the last edition of this document has been deleted.

A list of all parts in the ISO 4524 series can be found on the ISO website.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.

Metallic coatings — Test methods for electrodeposited gold and gold alloy coatings —

Part 3:

Electrographic tests for porosity

1 Scope

This document specifies four electrographic tests for assessing the porosity of electrodeposited gold and gold alloy coatings for engineering, and decorative and protective purposes.

2 Normative references

There are no normative references in this document.

3 Terms and definitions

No terms and definitions are listed in this document.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at https://www.iso.org/obp
- IEC Electropedia: available at https://www.electropedia.org/

4. Nioxime paper test standards/iso/68094e3a-f216-48ee-9f65-91103e49573f/iso-4524-3-2021

4.1 Applicability

This method is suitable for the examination of gold coatings on undercoats of nickel or tin-nickel alloy.

4.2 Materials

4.2.1 General

During the test, use only reagents of recognized analytical grade and only distilled water or water of equivalent purity.

4.2.2 Nioxime paper

Soak filter or duplicating paper for 10 min in an 8 g/l solution of nioxime (cyclohexan-1,2-dione dioxime).

Remove the excess solution by blotting and hang the paper up to dry.

4.2.3 Moistened blotting paper

Soak a good quality white blotting paper in water and dry it to a degree that consistently produces sharply defined electrograms.

4.3 Procedure

Lightly brush the electroplated coating to remove loose dust and debris, then degrease it in 1,1,1-trichloroethane vapour or other suitable solvent.

Moisten a piece of the nioxime paper (4.2.2) with water. Remove excess water by blotting. Place the treated nioxime paper on the electroplated specimen (which acts as the anode). On the other face of the nioxime paper, place a piece of the moistened blotting paper (4.2.3), followed by a high purity clean aluminium or stainless steel platen (which acts as the cathode). Compress the assembly so that the pressure between the nioxime paper and the specimen is uniform and between 1,4 MPa and 1,7 MPa. While under compression, pass a smooth ripple-free d.c. current from a source not exceeding 12 V. Set the current density initially at 7,5 mA/cm² of the anode area and pass for 30 s.

Expose the electrogram produced on the nioxime paper to ammonia vapour and then allow to dry. The presence of any defect in the electroplated coating is revealed by a corresponding pink stain on the paper. When electroplated on copper, defects in the nickel or tin-nickel undercoat are revealed as green stains.

5 Dye-transfer paper test 1

5.1 Applicability

This method is suitable for the examination of gold coatings on copper.

5.2 Materials

5.2.1 General

During the test, unless otherwise stated, use only reagents of recognized analytical grade and only distilled water or water of equivalent purity.

5.2.2 Dye-transfer paper

Soak a piece of dye-transfer paper for 30 min in a freshly prepared solution containing 0,01 mol/l of sodium chloride (NaCl) and 0,01 mol/l of sodium carbonate (Na $_2$ CO $_3$) made by dissolving 0,58 g of sodium chloride and 1,06 g sodium carbonate together in 1 l of water. Remove the excess solution with blotting paper.

NOTE Dye-transfer paper can be obtained from some suppliers of photographic materials.

5.3 Procedure

Remove loose dirt and debris from the electroplated coating with a soft brush and then degrease it in 1,1,1-trichloroethane vapour or other suitable solvent.

Place a piece of the damp dye-transfer paper (5.2.2) emulsion side down on the electroplated specimen (which acts as the anode), followed by a high purity clean aluminium or stainless steel platen (which acts as the cathode). Compress the assembly so that the pressure between the dye-transfer paper and the specimen is uniform and between 1,4 MPa and 1,7 MPa. While under compression, apply a fixed potential of 4 V d.c. for 30 s. Remove the dye-transfer paper and develop it in a saturated ethanolic solution of dithiooxamide for 30 s. Dissolve 0,25 g of dithiooxamide in 100 ml of ethanol by gentle warming; if necessary, filter when cold before use.

Wash the electrogram produced in cold running water and allow to dry. The presence of any defect in the plated coating is revealed by a corresponding dark olive-green stain on the paper.

It is essential that the test papers produced in carrying out the test be rinsed in hot water and carefully dried, on completion of the tests.