

Designation: D6656 – 01 (Reapproved2010)<sup>ε1</sup>

# Standard Test Method for Determination of Chromic Oxide in Wet Blue (Perchloric Acid Oxidation)<sup>1</sup>

This standard is issued under the fixed designation D6656; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

ε<sup>1</sup> NOTE—The SI statement was added and the Subcommittee name corrected in footnote 1 in November 2010.

### 1. Scope

- 1.1 This test method covers the determination of chromic oxide in wet blue that has been partly or completely tanned with chromium compounds. In general, the samples will contain chromium content between 1 % and 5 % when calculated as chromic oxide expressed upon a dry basis otherwise referred to as moisture-free basis (mfb).
- 1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
- 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. See Section 9 for specific safety hazards.

#### 2. Referenced Documents

2.1 ASTM Standards:<sup>2</sup>

D6658 Test Method for Volatile Matter (Moisture) of Wet Blue by Oven Drying

D6659 Practice for Sampling and Preparation of Wet Blue for Physical and Chemical Tests

E180 Practice for Determining the Precision of ASTM Methods for Analysis and Testing of Industrial and Specialty Chemicals (Withdrawn 2009)<sup>3</sup>

#### 3. Terminology

3.1 *Definitions*—The terms and definitions employed within this method are commonly used in normal laboratory practice and require no special comment.

# 4. Summary of Test Method

4.1 The perchloric acid method may be applied to wet blue. Accurately weighed wet blue samples are digested in a blend of concentrated nitric acid and a prepared "oxidation mixture" consisting of sulfuric and perchloric acids. Once completed, oxidation of all tri-valent to haxavalent chrome is executed by controlled heating. Upon dilution, the chromium is indirectly (back) titrated volumetrically with standardized thiosulfate using released iodine as the titrate. The perchloric acid method requires less manipulation than procedures based upon fusion of the ash. However, care must be taken because of potential hazards in the use of this reagent.

# 5. Significance and Use

- 5.1 The procedure described is specific for chromium in wet blue. Vanadium is the only common interfering element and is rarely present in quantity. The precision and accuracy of the methods are usually, at least, as good as the sampling of wet blue itself.
- 4 5.2 The chromium content of wet blue is related to the degree of tannage obtained, and hence may be a matter for specification in the purchase of wet blue. The procedure described provides adequate accuracy for this purpose.

# 6. Apparatus

- 6.1 Analytical Balance—accurate and calibrated to 0.001 g.
- 6.2 Erlenmeyer Flasks—250 mL capacity or equivalent.
- 6.3 *Burette*—50 mL capacity of suitable calibration grade, minimum calibration of 0.1 mL.
  - 6.4 Glass Anti-Bumping Beads—or equivalent.
  - 6.5 Measuring Cylinders—of 50 mL capacity or equivalent.
  - 6.6 Small Glass Filter Funnel.
- 6.7 *Dessicator*—of suitable size and design and charged with fresh dessicant.
  - 6.8 Weighing Vessels—of suitable size and design.
- 6.9 Drying Oven—with accurate variable temperature controls.

<sup>&</sup>lt;sup>1</sup> This test method is under the jurisdiction of ASTM Committee D31 on Leather and is the direct responsibility of Subcommittee D31.02 on Wet Blue.

Current edition approved Oct. 1, 2010. Published November 2010. Originally approved in 1996. Last previous edition approved in 2006 as D6656-02 (2006). DOI: 10.1520/D6656-01R10E01.

<sup>&</sup>lt;sup>2</sup> For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

<sup>&</sup>lt;sup>3</sup> The last approved version of this historical standard is referenced on www.astm.org.

# 7. Reagents and Materials

- 7.1 Purity of Reagents—Analytical Reagent (AR) grade shall be used in all tests. Unless otherwise indicated, it is intended that all reagents shall conform to specifications of the Committee on Analytical Reagents of the American Chemical Society, where such specifications are available. Other grades may be used, provided it is first ascertained that the reagent is of sufficiently high purity to permit its use without lessening the accuracy of the determination.
- 7.2 *Purity of Water*—Unless otherwise indicated, reference to water shall be understood to mean distilled water or water of equal purity.
- 7.3 Commercial Reagents—The use of commercially available pre-standardized analytical reagents and solutions is appropriate, providing those reagents and solutions have been prepared according to and conform to the previously mentioned specifications (see 7.1).
  - 7.4 Nitric Acid—(HNO<sub>3</sub>), 70 % w/w.
- 7.5 Perchloric Acid—( $HClO_4$ ), 60-62 % w/w. 70 % or 72 % w/w perchloric acid may be substituted; however, storage is somewhat more hazardous.
  - 7.6 Sulfuric Acid—(H<sub>2</sub>SO<sub>4</sub>), 96-98 % w/w.
  - 7.7 Potassium Iodide—(KI), 99-100 % purity.
- 7.8 Potassium Iodide Solution—(KI), 10 % w/w. Dissolve  $10 \text{ g} (\pm 0.1 \text{ g})$  of potassium iodide into 100 ml of water.
- 7.9 Starch Indicator Solution—2 % or equivalent. Prepared according to accepted procedures available in analytical handbooks.
- 7.10 Oxidizing Mixture—Mix 1666 mL of concentrated sulfuric acid into an appropriate glass container that contains 2500 mL of perchloric acid using extreme caution while adding. Cool the mixture to room temperature before use.
  - 7.11 *Phosphoric Acid*— $(H_3PO_4)$ , 40 % w/w. Dilute 45 mL of 85 % phosphoric acid with water to 100 ml.
  - 7.12 *Hydrochloric Acid*—(HCl, 1:1 dilution of 37 %, w/w). Used in standardization of thiosulfate solution.
  - 7.13 *Potassium Dichromate*—(K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>). Used in standardization of thiosulfate solution.
  - 7.14 *Sodium Carbonate*—(Na<sub>2</sub>CO<sub>3</sub>). Used in preparation of thiosulfate solution.
  - 7.15 Sodium Thiosulfate—(Na $_2S_2O_3\cdot 5H_2O).$  Used to prepare thiosulfate solution.
  - 7.16 Sodium Thiosulfate Standard Solution—(Na $_2$ S $_2$ O $_3$ ), 0.1N ( $\pm$  0.0002). Dissolve 24.85 g of sodium thiosulfate (Na $_2$ S $_2$ O $_3 \cdot 5H_2$ O) in previously boiled water, add 1.00 g of sodium carbonate (Na $_2$ CO $_3$ ) and dilute to 1000 mL.

## 8. Standardization

8.1 Dry potassium dichromate ( $K_2Cr_2O_3$ ) in an oven at 130 °C for 2 h and cool in a dessicator. Once cool, weigh about 0.2 g ( $\pm$  0.0001 g) of this dry potassium dichromate into a clean 250 ml, glass-stoppered Erlenmeyer flask. Dissolve in 50 mL water; add 4 ml of hydrochloric acid (HCl, 1:1) and 20 ml of KI solution. Stopper the flask and allow to stand for 5 min. in the dark. Titrate with the thiosulfate solution that is to be standardized. When the solution color has faded to brownishgreen, add 2 ml of 2 % starch solution and continue titrating until the deep blue color changes to a clear green. Record the volume of titrant used. Calculate the Normality of the thiosulfate solution as follows:

*Normality* =  $A \div (0.04903 \times B)$ 

where:

 $A = \text{grams of } K_2Cr_2O_7 \text{ used, and}$ 

B = ml required for titration.

8.2 *Shelf Life*—The thiosulfate solution is relatively stable. However, it should be re-standardized at least once every month. Alternatively, a commercially available prestandardized analytical solution may be substituted.

#### 9. Hazards

- 9.1 Chemicals used can be harmful or explosive, or both.
- 9.2 The improper use of perchloric acid can lead to violent and serious explosions. In general, these can be traced to situations where concentrated perchloric acid has come in contact with organic or easily oxidized materials.
- 9.3 The exact procedures given must be followed and the digestion, once started, should be kept from possible contact with other organic matter. The digestion should never be allowed to boil dry. The perchloric acid should never be used without the accompanying use of nitric and sulfuric acids.
- 9.4 Any spills involving perchloric acid should be flushed with water and a liquid acid neutralizer.
- 9.5 The use of a perchloric acid hood, reserved for perchloric acid digestion, equipped with wash-down facilities and constructed entirely of non-porous inorganic material is required.
- 9.6 Perchloric acid bottles should be stored on a ceramic or non-porous tray or shelf and never on a wooden or pervious shelf.
- 9.7 Perchloric acid must not be permitted to go dry in the presence of organics, metals or metal salts.
- 9.8 It is advisable to keep only a one pound (0.45 kg) bottle of acid in a working area.

### 10. Test Specimens

10.1 The test specimen shall be 3-5 g of wet blue from a composite sample prepared according to Practice D6659 and weighed to an accuracy of 0.001 g.

# 11. Procedure

11.1 Accurately weigh between 3 and 5 g ( $\pm$  0.001 g) of the prepared wet blue sample into a 250 mL Erlenmeyer flask. Record the weight to the nearest 0.001 g.

<sup>&</sup>lt;sup>4</sup> Reagent Chemicals, American Chemical Society Specifications, American Chemical Society, Washington, DC. For suggestions on the testing of reagents not listed by the American Chemical Society, see Analar Standards for Laboratory Chemicals, BDH Ltd. Poole, Dorset, UK and the United States Pharmacopoeia and National Formulary, U.S. Pharmacopoeial Convention, Inc. (USPC), Rockville, MD.