SLOVENSKI STANDARD oSIST prEN IEC 63369-1:2024

01-marec-2024

Metodologija vrednotenja ogljičnega odtisa za industrijske litij-ionske baterije

Methodology for the carbon footprint calculation applicable to industrial lithium-ion batteries

Méthodologie pour le calcul de l'empreinte carbone applicable aux batteries lithium-ion industrielles

Ta slovenski standard je istoveten z: prEN IEC 63369-1:2023

ICS:

13.020 .60

Življenjski ciklusi izdelkov
Product life-cycles
29.220.01

Galvanski členi in baterije na splošno

Galvanic cells and batteries in general
oSIST prEN IEC 63369-1:2024 en

iTeh Standards (hittps://standards.iteh.\& Document Preview

oSIST prEN IEC 63369-1:2024

https:/standards.iteh.ai/catalog/standads/sist/966ba4ff-4230-4838-bebd-f86. d /5eb87e/osist-pren-iec-63369-1-2024

21A/867/CDV

PRoject number:

IEC 63369-1 ED1

DATE OF CIRCULATION:
2023-12-22

Closing date for voting:
2024-03-15

SUPERSEDES DOCUMENTS:

21A/805/CD, 21 A/818A/CC

This document is still under study and subject to change. It should not be used for reference purposes.
Recipients of this document are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.

Recipients of this document are invited to submit, with their comments, notification of any relevant "In Some Countries" clauses to be included should this proposal proceed. Recipients are reminded that the CDV stage is the final stage for submitting ISC clauses. (SEE AC/22/2007 OR NEW GUIDANCE DOC).

Title:

Methodology for the Carbon Footprint calculation applicable to industrial Lithium-ion batteries

PROPOSED STABILITY DATE: 2025

Note from TC/SC officers:

During SC21A / WG6 Fall Meeting on October 24th, 2023, the answers of the IEC63369 project team to the comments have been presented to the WG6 experts and approved by the Secretary. The Revised Comments have been

Copyright © 2023 International Electrotechnical Commission, IEC. All rights reserved. It is permitted to download this electronic file, to make a copy and to print out the content for the sole purpose of preparing National Committee positions. You may not copy or "mirror" the file or printed version of the document, or any part of it, for any other purpose without permis sion in writing from IEC.
FOREWORD 6
INTRODUCTION 8
1 Scope 9
2 Normative references 9
3 Terms, definitions and abbreviated terms 10
3.1 Terms and definitions 10
3.2 Abbreviated terms 14
4 General information 15
5 Classification of industrial Li-ion batteries 16
5.1 Repetitive energy supply 16
5.1.1 Repetitive energy supply in mobile equipment ("REP-MOB") 16
5.1.2 Repetitive energy supply in stationary equipment ("REP-STA") 17
5.2 On-demand energy supply 17
5.2.1 On-demand energy supply in mobile equipment ("OND-MOB") 17
5.2.2 On-demand energy supply in stationary equipment ("OND-STA") 17
5.3 Potential combination of functionality classes 17
6 Functional unit 18
6.1 Functional Unit: generalities 18
Functional Unit and Reference Flow for repetitive energy supply (REP-MOB \& REP-STA) 19
$6.2 \quad 19$20
6.2.2 Example of REP-STA load profile - ESS container 21
6.3 Functional Unit and Reference Flow for On-demand energy supply (OND-MOB \& OND-STA) 22
6.3.1 Example of OND-MOB load profile -IEC 62973-1 Regional train / EMU 25
6.3.2 Example of OND-STA load profile: IEC 60896-21 25
Calculation methodology 26
7 26
7.1 Concept of virtual representative product 27
7.2 Composition of the virtual representative product 27
7.3 Derivation of the virtual representative products 29
7.4 System boundaries 32
7.5 Raw material acquisition stage and production stage 36
7.6 Distribution 40
7.7 Use stage 40
7.8 End-Of-Life stage 40
7.9 Carbon footprint assessment 41
7.10 Limitations 42
8 Life cycle inventory 42
9 Data quality requirements 45
9.1 Company specific foreground datasets 46
9.2 Secondary datasets 49
10 End of Life Modelling 50
10.1 The Circular Footprint Formula (CFF) 50
10.2 Parameters of the CFF 51
10.3 The A factor 52
10.4 The B factor 52
10.5 The quality ratios: Qsin/Qp and Qsout/Qp 52
10.6 Recycled content (R1) 53
10.7 Recycling output rate (R2) 53
10.8 Erecycled (Erec) and ErecyclingEoL (ErecEoL) 54
10.9 The E*v 55
11 Battery Carbon Footprint results 55
12 Verification 56
12.1 Defining the scope of the verification 56
12.2 Verification procedure 57
12.3 Verifier(s) 57
12.3.1 Minimum requirements for verifier(s) 57
Annex A (normative) DATA SOURCE AND METHODOLOGY FOR TRANSPORTATION 59
A. 1 SEA \& FLUVIAL 59
A. 2 RAIL 59
A. 3 AIR 59
A. 4 Road transport 59
Bibliography 61
Table 1: Example with dummy figures of a repetitive-cycling functional unit and resulting carbon footprint 19
Table 2 - Key aspects of the Functional Unit defining the key aspects used to define theFU. REP-MOBTable 3 - Key aspects of the Functional Unit defining the key aspects used to define theFU. REP-STATable 4 - Key aspects of the Functional Unit defining the key aspects used to define theFU OND-MOBTable 5 - Key aspects of the Functional Unit defining the key aspects used to define theOND-STATable 6 - Example with dummy figures of the on-demand functional unit and resultingcarbon footprintTable 7 - Representative products for the 4 functionality classesTable 8 - Life cycle stagesTable 9 - Battery Carbon footprint calculation indicator42
Table 10 - Data Quality Rating (DQR) and data quality levels of each data quality criterionquality rating
Table 12 - How to assign the values to DQR criteria when using company-specificinformation. No criteria shall be modified
Table 13 - How to assign the values to DQR criteria when using secondary datasetsassessment of the competences of verifier(s)

Figure 1 - Example of OND-MOB: load profile for regional train / EMU (without starting up segment)
Figure 2 - Example of OND-STA: load profile for UPS/ data centers
Figure 3 - representative products components
Figure 4 - System Boundaries- life cycle of a Li-ion battery system35
Figure 5 -Li-ion battery production cradle-to-gate processes 39
Figure 6 - Disassembly and recycling processes 41
Figure 7 - Typical daily solar generation \& load curve 44
Figure 8 - Graphical representation of a company-specific dataset. A company-specific dataset is a partially disaggregated one: the DQR of the activity data and direct elementary flows shall assessed. 46
Figure 9 - point of substitution for recycling 55

INTERNATIONAL ELECTROTECHNICAL COMMISSION

CARBON FOOTPRINT CALCULATION APPLICABLE TO INDUSTRIAL LITHIUM-ION BATTERIES
 Part 1: General requirements and methodology

FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international cooperation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees
3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter
5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
6) All users should ensure that they have the latest edition of this publication.
7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

IEC 63369 has been prepared by subcommittee SC21A/WG6, of IEC technical committee SC21A. It is an International Standard.

The text of this International Standard is based on the following documents:

Draft	Report on voting
$\mathrm{XX} / \mathrm{XX/FDIS}$	$\mathrm{XX} / \mathrm{XX} /$ RVD

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this International Standard is English.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at
www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at http://www.iec.ch/standardsdev/publications.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

CARBON FOOTPRINT CALCULATION APPLICABLE TO INDUSTRIAL LITHIUM-ION BATTERIES

 Part 1: General requirements and methodology

 Part 1: General requirements and methodology}

1 Scope

This document is part of a series. The first part addresses general requirements and methodology whereas the second part addresses applications of the methodology.

This document provides a comprehensive methodology for the calculation of carbon footprint of industrial type Li-ion battery systems from cradle to grave.

Second life and/or usage that was not intended when the battery is put on the market is not taken into account.

This document along with the other parts of the standard does not pertain to Li-ion batteries of portable type or for use in electric road vehicles.

The definition of the parameters used for the calculation allows for an improved comparability of results for all rechargeable Li-ion chemistries. Classes of representative products are defined in this document to allow comparison inside each class.

This methodology, based on the data provided by the battery manufacturer, is mainly intended for use by the battery purchaser or the battery end-user in order to compare the carbon footprint to select between battery systems being considered for their use over their Reference Service Life (RSL).

The methodology can also be used for a variety of purposes such as for battery system development, eco-design and participation in voluntary or mandatory programs.

After cell manufacturing, and for the benefit of any downstream user, an intermediate collection of data such as the data for processes \& material components, related to carbon footprint weight of the cell, can be performed by the cell manufacturer. Primary data are to be collected by cell/components manufacturers. This document with the other parts of the standard offers also general guidance for the specific application of ISO 14067 to such a calculation. The methodology in this document is based exclusively on attributional LCA.

The carbon footprint calculation of charging equipment and power conversion equipment is not covered in this document.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 62619:2022 Secondary cells and batteries containing alkaline or other non-acid electrolytes - Safety requirements for secondary lithium cells and batteries, for use in industrial applications

IEC TS 62933-2-2:2022 Electrical energy storage (EES) systems - Part 2-2: Unit parameters and testing methods - Application and performance testing

IEC TS 62933-3-1:2018 Electrical energy storage (EES) systems 212 - Part 3-1: Planning and performance assessment of electrical energy storage systems - General specification

IEC 62973-1:2018 Railway applications - Rolling stock - Batteries for auxiliary power supply systems - Part 1: General requirements

IEC 60896-21:2004 Stationary lead-acid batteries - Part 21: Valve regulated types - Methods of test
ISO/IEC 17020:2012 Conformity assessment -- Requirements for the operation of various types of bodies performing inspection

ISO 15686-8:2008 Buildings and constructed assets - Service-life planning - Part 8: Reference service life and service-life estimation

ISO 14067:2018 Greenhouse gases - Carbon footprint of products - Requirements and guidelines for quantification

ISO 14040:2006 Environmental management — Life cycle assessment — Principles and framework
ISO 14044:2006 Environmental management — Life cycle assessment — Requirements and guidelines

ISO 14025:2006 Environmental labels and declarations - Type III environmental declarations Principles and procedures

3 Terms, definitions and abbreviated terms

3.1 Terms and definitions

For the purposes of this document, the following terms and definitions apply.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- IEC Electropedia: available at http://www.electropedia.org/
at
- ISO Online browsing platform: available at http://www.iso.org/obp

3.1.1
 primary data
 foreground data
 company-specific data

quantified value of a process or an activity obtained from a direct measurement or a calculation based on direct measurements
[source : ISO 14067 (2018) 3.1.6.1]

3.1.2

Site-specific data /??

Primary data obtained within the product system.

[source : ISO 14067 (2018) 3.1.6.2]

Note 1 to entry: All site-specific data are primary data but not all primary data are site-specific data because they may be obtained from a different product system.

Note 2 to entry: In case the component is manufactured in several facilities, to determine the level of representativeness of the primary data collected, a statistical combination may be applied.

3.1.3

secondary data
background data
data which do not fulfil the requirements for primary data

Note 1 to entry: Secondary data can include data from databases and published literature, default emission factors from national inventories, calculated data, estimates or other representative data, validated by competent authorities.

Note 2 to entry: Secondary data can include data obtained from proxy processes or estimates not directly collected, measured, or estimated by the company, but sourced from a third party LCl database or other sources.

Note 1 to entry: data not originated from a specific process within the supply-chain of the company performing the carbon footprint study.

Note 2 to entry: Secondary data include industry average data (e.g., from published production data, government statistics, and industry associations), literature studies, engineering studies and patents, and may also be based on financial data, and contain other generic data.

Note 3 to entry: Primary data that go through a horizontal aggregation step are considered as secondary data.

Note 4 to entry: details on secondary data selection is provided in IEC63369-2
[source : ISO 14067 (2018) 3.1.6.3]

3.1.4

Battery manufacturer

Entity which is supplying the battery system(s) to meet the Reference Service Life of the application as expressed in the technical specifications from the user.

Note 1 to entry: The component manufacturer that does not know the sizing of the battery is NOT defined as the battery manufacturer in the case of this standard.

3.1.5

Battery system sizing

Activity that takes into account the final usage of the battery system and selects the most optimized solution including all its technical parameters

Note 1 to entry: It includes for example efficiencies, life expectations, selection of sub-systems, safety, etc.

3.1 .6

Component manufacturer

Entity which is supplying a component of the battery system.
Note 1 to entry: The component manufacturer does not perform the battery system sizing.

3.1 .7

Functionality class
< of battery systems>
Grouping where the battery system presents similarities in their operation in service
Note 1 to entry: Battery systems in the same functionality class can be compared in terms of carbon footprint

3.1 .8

Representative virtual product

Market weighted-average model of existing batteries in a given functionality class.
Note 1 to entry: There is one representative virtual products per functionality class except when the bill of materials is significantly different.

3.1 .9

Battery System

Battery

<for Li-ion>
System which comprises one or more cells, modules or battery packs and has a battery management system intended to provide the Reference Service Life as stated by the user.

Note 1 to entry: The battery system can have multiple additional components eg thermal management. More than one battery system can constitute a larger battery system.
[SOURCE: IEC 62619:2022, 3.11, modified - "capable of controlling current in case of overcharge, overcurrent, overdischarge, and overheating" has been replaced by "intended to provide the Reference Service Life as stated by the user" and Note1 to entry deleted.]

3.1.10

Functional unit

quantified performance, as stated in the user specifications, of the service provided by an industrial battery system
[SOURCE: ISO 14040:2006, 3.20, modified, deleted "of a product system for use as a reference unit" and replaced by "as stated in the user specifications, of the service provided by an industrial battery system" -]

3.1.11

Reference flow

Amount of product needed to fulfil the defined function, measured in kg of battery system per kWh of the total energy required (for repetitive cycling REP) or per kWh of the "back-up cycle" (for on demand usage OND) by the application over its Reference Service Life.

